dwitidibyajyoti's picture
dwitidibyajyoti/fine-tune-layoutmlv3-using-our-dataset
9b58aac
|
raw
history blame
2.36 kB
---
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4598
- Precision: 0.6190
- Recall: 0.8667
- F1: 0.7222
- Accuracy: 0.9428
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 10.0 | 100 | 0.5546 | 0.4510 | 0.7667 | 0.5679 | 0.9016 |
| No log | 20.0 | 200 | 0.4975 | 0.5510 | 0.9 | 0.6835 | 0.9441 |
| No log | 30.0 | 300 | 0.4426 | 0.5098 | 0.8667 | 0.6420 | 0.9455 |
| No log | 40.0 | 400 | 0.5438 | 0.4727 | 0.8667 | 0.6118 | 0.9322 |
| 0.2854 | 50.0 | 500 | 0.3669 | 0.6047 | 0.8667 | 0.7123 | 0.9548 |
| 0.2854 | 60.0 | 600 | 0.5638 | 0.5778 | 0.8667 | 0.6933 | 0.9348 |
| 0.2854 | 70.0 | 700 | 0.3922 | 0.6512 | 0.9333 | 0.7671 | 0.9574 |
| 0.2854 | 80.0 | 800 | 0.3999 | 0.6047 | 0.8667 | 0.7123 | 0.9535 |
| 0.2854 | 90.0 | 900 | 0.4413 | 0.5814 | 0.8333 | 0.6849 | 0.9428 |
| 0.0112 | 100.0 | 1000 | 0.4598 | 0.6190 | 0.8667 | 0.7222 | 0.9428 |
### Framework versions
- Transformers 4.33.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3