|
--- |
|
license: cc-by-nc-sa-4.0 |
|
base_model: microsoft/layoutlmv3-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: test |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# test |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4598 |
|
- Precision: 0.6190 |
|
- Recall: 0.8667 |
|
- F1: 0.7222 |
|
- Accuracy: 0.9428 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 1000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 10.0 | 100 | 0.5546 | 0.4510 | 0.7667 | 0.5679 | 0.9016 | |
|
| No log | 20.0 | 200 | 0.4975 | 0.5510 | 0.9 | 0.6835 | 0.9441 | |
|
| No log | 30.0 | 300 | 0.4426 | 0.5098 | 0.8667 | 0.6420 | 0.9455 | |
|
| No log | 40.0 | 400 | 0.5438 | 0.4727 | 0.8667 | 0.6118 | 0.9322 | |
|
| 0.2854 | 50.0 | 500 | 0.3669 | 0.6047 | 0.8667 | 0.7123 | 0.9548 | |
|
| 0.2854 | 60.0 | 600 | 0.5638 | 0.5778 | 0.8667 | 0.6933 | 0.9348 | |
|
| 0.2854 | 70.0 | 700 | 0.3922 | 0.6512 | 0.9333 | 0.7671 | 0.9574 | |
|
| 0.2854 | 80.0 | 800 | 0.3999 | 0.6047 | 0.8667 | 0.7123 | 0.9535 | |
|
| 0.2854 | 90.0 | 900 | 0.4413 | 0.5814 | 0.8333 | 0.6849 | 0.9428 | |
|
| 0.0112 | 100.0 | 1000 | 0.4598 | 0.6190 | 0.8667 | 0.7222 | 0.9428 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.0.dev0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|