File size: 9,657 Bytes
949463b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_trainer
model-index:
- name: layoutlm-funsd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlm-funsd

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8927
- Column: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25}
- Ignore: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3}
- Key: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17}
- Value: {'precision': 0.6666666666666666, 'recall': 0.48484848484848486, 'f1': 0.5614035087719298, 'number': 33}
- Overall Precision: 0.6875
- Overall Recall: 0.4231
- Overall F1: 0.5238
- Overall Accuracy: 0.7947

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Column                                                                                      | Ignore                                                    | Key                                                                                        | Value                                                                                                      | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 2.4627        | 1.0   | 2    | 2.1288          | {'precision': 0.23529411764705882, 'recall': 0.16, 'f1': 0.19047619047619052, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17}                                 | {'precision': 0.06060606060606061, 'recall': 0.06060606060606061, 'f1': 0.06060606060606061, 'number': 33} | 0.0870            | 0.0769         | 0.0816     | 0.6887           |
| 2.1025        | 2.0   | 4    | 1.7650          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25}                                  | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17}                                 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33}                                                 | 0.0               | 0.0            | 0.0        | 0.6921           |
| 1.7503        | 3.0   | 6    | 1.4611          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25}                                  | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17}                                 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33}                                                 | 0.0               | 0.0            | 0.0        | 0.6904           |
| 1.4557        | 4.0   | 8    | 1.2624          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25}                                  | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17}                                 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33}                                                 | 0.0               | 0.0            | 0.0        | 0.6904           |
| 1.3067        | 5.0   | 10   | 1.1889          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25}                                  | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17}                                 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33}                                                 | 0.0               | 0.0            | 0.0        | 0.6904           |
| 1.1884        | 6.0   | 12   | 1.1436          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25}                                  | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17}                                 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33}                                                 | 0.0               | 0.0            | 0.0        | 0.6904           |
| 1.1456        | 7.0   | 14   | 1.0901          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25}                                  | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17}                                 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33}                                                 | 0.0               | 0.0            | 0.0        | 0.6904           |
| 1.0915        | 8.0   | 16   | 1.0410          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25}                                  | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 1.0, 'recall': 0.11764705882352941, 'f1': 0.21052631578947367, 'number': 17} | {'precision': 0.3333333333333333, 'recall': 0.030303030303030304, 'f1': 0.05555555555555555, 'number': 33} | 0.6               | 0.0385         | 0.0723     | 0.6937           |
| 1.0428        | 9.0   | 18   | 0.9990          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25}                                  | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 1.0, 'recall': 0.29411764705882354, 'f1': 0.45454545454545453, 'number': 17} | {'precision': 0.23529411764705882, 'recall': 0.12121212121212122, 'f1': 0.16, 'number': 33}                | 0.2727            | 0.1154         | 0.1622     | 0.7252           |
| 0.9819        | 10.0  | 20   | 0.9639          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25}                                  | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 1.0, 'recall': 0.4117647058823529, 'f1': 0.5833333333333334, 'number': 17}   | {'precision': 0.2631578947368421, 'recall': 0.15151515151515152, 'f1': 0.19230769230769232, 'number': 33}  | 0.3243            | 0.1538         | 0.2087     | 0.7517           |
| 0.9592        | 11.0  | 22   | 0.9344          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25}                                  | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 1.0, 'recall': 0.6470588235294118, 'f1': 0.7857142857142858, 'number': 17}   | {'precision': 0.3684210526315789, 'recall': 0.21212121212121213, 'f1': 0.2692307692307693, 'number': 33}   | 0.4737            | 0.2308         | 0.3103     | 0.7781           |
| 0.9011        | 12.0  | 24   | 0.9105          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25}                                  | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17}                                 | {'precision': 0.64, 'recall': 0.48484848484848486, 'f1': 0.5517241379310344, 'number': 33}                 | 0.66              | 0.4231         | 0.5156     | 0.7930           |
| 0.9426        | 13.0  | 26   | 0.8927          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25}                                  | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17}                                 | {'precision': 0.6666666666666666, 'recall': 0.48484848484848486, 'f1': 0.5614035087719298, 'number': 33}   | 0.6875            | 0.4231         | 0.5238     | 0.7947           |
| 0.8809        | 14.0  | 28   | 0.8821          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25}                                  | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17}                                 | {'precision': 0.6666666666666666, 'recall': 0.48484848484848486, 'f1': 0.5614035087719298, 'number': 33}   | 0.6875            | 0.4231         | 0.5238     | 0.7947           |
| 0.9188        | 15.0  | 30   | 0.8774          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25}                                  | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17}                                 | {'precision': 0.6666666666666666, 'recall': 0.48484848484848486, 'f1': 0.5614035087719298, 'number': 33}   | 0.6875            | 0.4231         | 0.5238     | 0.7947           |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3