Update README.md

#1
by buyi89 - opened
Files changed (1) hide show
  1. README.md +96 -3
README.md CHANGED
@@ -1,3 +1,96 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - dyyyyyyyy/ScaleQuest-Math
5
+ language:
6
+ - en
7
+ metrics:
8
+ - accuracy
9
+ library_name: transformers
10
+ pipeline_tag: text-generation
11
+ ---
12
+ <p align="center"><h2 align="center">Unleashing Reasoning Capability of LLMs via Scalable Question Synthesis from Scratch</h2></p>
13
+
14
+ # Model Card for ScaleQuest-Qwen2-Math-7B-QGen
15
+
16
+ <!-- Provide a quick summary of what the model is/does. -->
17
+
18
+ We introduce ScaleQuest, a scalable and novel data synthesis method that utilizes small-size open-source models to generate questions from scratch without the need for seed data with complex augmentation constraints.
19
+
20
+ * πŸ“‘ Project Page: [https://scalequest.github.io](https://scalequest.github.io/)
21
+ * πŸ’» Code: [https://github.com/yyDing1/ScaleQuest](https://github.com/yyDing1/ScaleQuest/)
22
+ * πŸ“– Paper: [Unleashing Reasoning Capability of LLMs via Scalable Question Synthesis from Scratch](https://arxiv.org/abs/2410.18693)
23
+ * πŸ’Ύ Models in the πŸ€— HuggingFace Hub: [ScaleQuest-Models](https://huggingface.co/collections/dyyyyyyyy/scalequest-670a7dc2623c91990f28913b)
24
+
25
+ <p align="center">
26
+ <img src="https://github.com/yyDing1/ScaleQuest/raw/main/img/results.png">
27
+ </p>
28
+
29
+ ## Datasets & Models
30
+
31
+ Math Dataset: [link](https://huggingface.co/datasets/dyyyyyyyy/ScaleQuest-Math)
32
+
33
+ We release two question generator models and four problem-solving models.
34
+
35
+ | Model | Type | MATH | Olympiad Bench | πŸ€— HuggingFace<br />Download Link |
36
+ | - | :-: | :-: | :-: | :-: |
37
+ | ScaleQuest-DeepSeekMath-7B-QGen | question generator | - | - | [link](https://huggingface.co/dyyyyyyyy/ScaleQuest-DeepSeekMath-7B-QGen)
38
+ | ScaleQuest-Qwen2-Math-7B-QGen | question generator | - | - | [link](https://huggingface.co/dyyyyyyyy/ScaleQuest-Qwen2-Math-7B-QGen)
39
+ | Mistral-7B-ScaleQuest | problem solver | 62.9 | 26.8 | [link](https://huggingface.co/dyyyyyyyy/Mistral-7B-ScaleQuest) |
40
+ | Llama3-8B-ScaleQuest | problem solver | 64.4 | 25.3 | [link](https://huggingface.co/dyyyyyyyy/Llama3-8B-ScaleQuest) |
41
+ | DeepSeekMath-7B-ScaleQuest | problem solver | 66.6 | 29.9 | [link](https://huggingface.co/dyyyyyyyy/DeepSeekMath-7B-ScaleQuest) |
42
+ | Qwen2-Math-7B-ScaleQuest | problem solver | 73.4 | 38.5 | [link](https://huggingface.co/dyyyyyyyy/Qwen2-Math-7B-ScaleQuest) |
43
+
44
+ ## Demo usage
45
+
46
+ Below is an example using `ScaleQuest-Qwen2-Math-7B-QGen`
47
+ ```python
48
+ from vllm import LLM, SamplingParams
49
+
50
+ model_name = "dyyyyyyyy/ScaleQuest-Qwen2-Math-7B-QGen"
51
+
52
+ pre_query_template = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n"
53
+ stop_tokens = ["<|im_start|>", "<|im_end|>", "<|endoftext|>"]
54
+
55
+ llm = LLM(
56
+ model=model_name,
57
+ tokenizer=model_name,
58
+ tensor_parallel_size=1,
59
+ max_model_len=4096,
60
+ enable_prefix_caching=True,
61
+ trust_remote_code=True,
62
+ swap_space=16,
63
+ gpu_memory_utilization=0.95,
64
+ )
65
+ sampling_params = SamplingParams(
66
+ n=4,
67
+ max_tokens=1024,
68
+ temperature=1.0,
69
+ top_p=0.99,
70
+ stop=stop_tokens,
71
+ )
72
+
73
+ outputs = llm.generate(pre_query_template, sampling_params)
74
+
75
+ # Print the outputs.
76
+ for output in outputs:
77
+ prompt = output.prompt
78
+ for idx, generated_output in enumerate(output.outputs):
79
+ generated_text = generated_output.text
80
+ print(f"Sample {idx + 1}:")
81
+ print(f"Prompt: {prompt!r}")
82
+ print(f"Generated text: {generated_text!r}")
83
+ print("-" * 50)
84
+
85
+ ```
86
+
87
+ ## Citation
88
+
89
+ ```bibtex
90
+ @article{ding2024unleashing,
91
+ title={Unleashing Reasoning Capability of LLMs via Scalable Question Synthesis from Scratch},
92
+ author={Ding, Yuyang and Shi, Xinyu and Liang, Xiaobo and Li, Juntao and Zhu, Qiaoming and Zhang, Min},
93
+ journal={https://arxiv.org/abs/2410.18693},
94
+ year={2024}
95
+ }
96
+ ```