Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: NousResearch/Yarn-Llama-2-7b-64k
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 55e36357c5615fb5_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/55e36357c5615fb5_train_data.json
  type:
    field_input: solution
    field_instruction: question
    field_output: answer
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: dzanbek/4dd15808-a8ea-4f36-8ca5-c01860ae7b24
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 70GiB
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/55e36357c5615fb5_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 2028
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 4dd15808-a8ea-4f36-8ca5-c01860ae7b24
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 4dd15808-a8ea-4f36-8ca5-c01860ae7b24
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

4dd15808-a8ea-4f36-8ca5-c01860ae7b24

This model is a fine-tuned version of NousResearch/Yarn-Llama-2-7b-64k on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0006

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 50

Training results

Training Loss Epoch Step Validation Loss
21.5286 0.0013 1 2.6745
17.1638 0.0066 5 1.6988
1.8049 0.0131 10 0.2280
0.0022 0.0197 15 0.0026
0.0096 0.0262 20 0.0022
0.0005 0.0328 25 0.0015
0.0 0.0393 30 0.0022
0.0 0.0459 35 0.0022
0.0 0.0524 40 0.0011
0.0 0.0590 45 0.0007
0.0 0.0655 50 0.0006

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
12
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for dzanbek/4dd15808-a8ea-4f36-8ca5-c01860ae7b24

Adapter
(109)
this model