metadata
language:
- en
license: apache-2.0
base_model: openai/whisper-tiny.en
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- eai6/bungoma_training
metrics:
- wer
model-index:
- name: Whisper tiny
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Nyansapo AI Dataset
type: eai6/bungoma_training
args: 'config: en, split: test'
metrics:
- name: Wer
type: wer
value: 379.5513373597929
Whisper tiny
This model is a fine-tuned version of openai/whisper-tiny.en on the Nyansapo AI Dataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.4549
- Wer: 379.5513
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.2224 | 1.38 | 250 | 0.6100 | 153.0630 |
0.545 | 2.76 | 500 | 0.0995 | 662.3814 |
0.2906 | 4.14 | 750 | 0.0822 | 650.7334 |
0.2063 | 5.52 | 1000 | 0.4549 | 379.5513 |
Framework versions
- Transformers 4.39.1
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2