metadata
language:
- en
license: cc-by-nc-sa-4.0
tags:
- code
- data science
datasets:
- ed001/ds-coder-instruct-v1
pipeline_tag: text-generation
model-index:
- name: datascience-coder-6.7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 34.64
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ed001/datascience-coder-6.7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 53.83
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ed001/datascience-coder-6.7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 37.96
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ed001/datascience-coder-6.7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 44.82
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ed001/datascience-coder-6.7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 55.72
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ed001/datascience-coder-6.7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 24.94
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ed001/datascience-coder-6.7b
name: Open LLM Leaderboard
The Data Science Coder
Data Science coder is a group of fine tuned models designed to help with coding for data science applications. It comes in 2 variants: 1.3b and 6.7b. Models are fine tuned from DeepSeek Coder instruct versions. Fine tuning was performed on the ed001/ds-coder-instruct-v1 dataset which is constructed by filtering publicly available datasets on HuggingFace.
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
def build_instruction_prompt(instruction):
return '''
You are the Data Science Coder, a helpful AI assistant created by a man named Ed.
You help people with data science coding and you answer questions about data science in a helpful manner.
### Instruction:
{}
### Response:
'''.format(instruction.strip()).lstrip()
tokenizer = AutoTokenizer.from_pretrained("ed001/datascience-coder-6.7b", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("ed001/datascience-coder-6.7b", trust_remote_code=True).cuda()
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=1024, top_p=0.95)
result = pipe(build_instruction_prompt("Perform EDA on the Iris dataset"))
print(result[0]['generated_text'])
Training Details
lora_r: 16
lora_alpha: 8
lora_dropout: 0.05
target_modules: q, k, v, o, gate_proj, down_proj, up_proj, lm_head
weight_decay: 0
optmizer: paged_adamw_32bit
lr: 1e-4
lr_scheduler: cosine
max_seq_len: 4096
batch_size: 4
max_grad_norm: 0.5
warmup_ratio: 0.05
num_epochs: 1
The model was trained on the python susbet of the ds-coder-instruct dataset.
Samples
Contact
GitHub: Ea0011
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 41.99 |
AI2 Reasoning Challenge (25-Shot) | 34.64 |
HellaSwag (10-Shot) | 53.83 |
MMLU (5-Shot) | 37.96 |
TruthfulQA (0-shot) | 44.82 |
Winogrande (5-shot) | 55.72 |
GSM8k (5-shot) | 24.94 |