eddiegulay's picture
Update README.md
eaeead6
|
raw
history blame
2.46 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
  - generated_from_trainer
datasets:
  - common_voice_13_0
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xlsr-mvc-swahili
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_13_0
          type: common_voice_13_0
          config: sw
          split: test
          args: sw
        metrics:
          - name: Wer
            type: wer
            value: 0.32237526397075045

wav2vec2-large-xlsr-mvc-swahili

This model is a fine-tuned version of alamsher/wav2vec2-large-xlsr-53-common-voice-sw on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:

  • Loss: inf
  • Wer: 0.3224

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.17 100 inf 1.0
No log 0.34 200 inf 1.0
No log 0.5 300 inf 0.3420
3.3446 0.67 400 inf 0.3431
3.3446 0.84 500 inf 0.3500
3.3446 1.01 600 inf 0.3433
3.3446 1.17 700 inf 0.3347
0.1975 1.34 800 inf 0.3340
0.1975 1.51 900 inf 0.3307
0.1975 1.68 1000 inf 0.3233
0.1975 1.84 1100 inf 0.3224

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1