|
---
|
|
license: mit
|
|
base_model: nlptown/bert-base-multilingual-uncased-sentiment
|
|
tags:
|
|
- generated_from_trainer
|
|
metrics:
|
|
- accuracy
|
|
model-index:
|
|
- name: bert-base-multilingual-uncased-sentiment-finetuned-mnli
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# bert-base-multilingual-uncased-sentiment-finetuned-mnli
|
|
|
|
This model is a fine-tuned version of [nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) on an unknown dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 0.5330
|
|
- Accuracy: 0.7902
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 2e-05
|
|
- train_batch_size: 16
|
|
- eval_batch_size: 16
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- num_epochs: 15
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
|
| 0.5568 | 1.0 | 1080 | 0.5330 | 0.7902 |
|
|
| 0.4713 | 2.0 | 2160 | 0.5633 | 0.7875 |
|
|
| 0.3791 | 3.0 | 3240 | 0.6680 | 0.7824 |
|
|
| 0.2967 | 4.0 | 4320 | 0.8067 | 0.7624 |
|
|
| 0.2121 | 5.0 | 5400 | 0.9723 | 0.7624 |
|
|
| 0.1511 | 6.0 | 6480 | 1.1602 | 0.7629 |
|
|
| 0.1277 | 7.0 | 7560 | 1.4037 | 0.7736 |
|
|
| 0.0931 | 8.0 | 8640 | 1.5388 | 0.7675 |
|
|
| 0.0768 | 9.0 | 9720 | 2.0003 | 0.7330 |
|
|
| 0.0457 | 10.0 | 10800 | 1.8301 | 0.7756 |
|
|
| 0.0383 | 11.0 | 11880 | 1.9697 | 0.7701 |
|
|
| 0.0286 | 12.0 | 12960 | 2.0533 | 0.7756 |
|
|
| 0.0175 | 13.0 | 14040 | 2.2299 | 0.7594 |
|
|
| 0.0101 | 14.0 | 15120 | 2.1549 | 0.7749 |
|
|
| 0.0055 | 15.0 | 16200 | 2.2199 | 0.7703 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.41.0
|
|
- Pytorch 2.3.0+cu121
|
|
- Datasets 2.19.1
|
|
- Tokenizers 0.19.1
|
|
|