YAML Metadata Error: "model-index" must be an array

Model RuPERTa_base_sentiment_analysis_es

A finetuned model for Sentiment analysis in Spanish

This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container, The base model is RuPERTa-base (uncased) which is a RoBERTa model trained on a uncased version of big Spanish corpus. It was trained by mrm8488, Manuel Romero.Link to base model

Dataset

The dataset is a collection of movie reviews in Spanish, about 50,000 reviews. The dataset is balanced and provides every review in english, in spanish and the label in both languages.

Sizes of datasets:

  • Train dataset: 42,500
  • Validation dataset: 3,750
  • Test dataset: 3,750

Hyperparameters

{
"epochs": "4",
"train_batch_size": "32",    
"eval_batch_size": "8",
"fp16": "true",
"learning_rate": "3e-05",
"model_name": "\"mrm8488/RuPERTa-base\"",
"sagemaker_container_log_level": "20",
"sagemaker_program": "\"train.py\"",
}

Evaluation results

Accuracy = 0.8629333333333333 F1 Score = 0.8648790746582545 Precision = 0.8479381443298969 Recall = 0.8825107296137339

Test results

Accuracy = 0.8066666666666666 F1 Score = 0.8057862309134743 Precision = 0.7928307854507116 Recall = 0.8191721132897604

Model in action

Usage for Sentiment Analysis

import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("edumunozsala/RuPERTa_base_sentiment_analysis_es")
model = AutoModelForSequenceClassification.from_pretrained("edumunozsala/RuPERTa_base_sentiment_analysis_es")

text ="Se trata de una película interesante, con un solido argumento y un gran interpretación de su actor principal"

input_ids = torch.tensor(tokenizer.encode(text)).unsqueeze(0)
outputs = model(input_ids)
output = outputs.logits.argmax(1)

Created by Eduardo Muñoz/@edumunozsala

Downloads last month
18
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results

Model card error

This model's model-index metadata is invalid: Schema validation error. "model-index" must be an array