|
--- |
|
language: |
|
- pl |
|
tags: |
|
- text |
|
- sentiment |
|
- politics |
|
metrics: |
|
- accuracy |
|
- f1 |
|
pipeline_tag: text-classification |
|
widget: |
|
- text: Przykro patrzeć, a słuchać się nie da. |
|
example_title: example 1 |
|
- text: Oczywiście ze Pan Prezydent to nasza duma narodowa!! |
|
example_title: example 2 |
|
base_model: dkleczek/bert-base-polish-cased-v1 |
|
model-index: |
|
- name: PaReS-sentimenTw-political-PL |
|
results: |
|
- task: |
|
type: sentiment-classification |
|
name: Text Classification |
|
dataset: |
|
name: tweets_2020_electionsPL |
|
type: tweets |
|
metrics: |
|
- type: f1 |
|
value: 94.4 |
|
--- |
|
|
|
# PaReS-sentimenTw-political-PL |
|
|
|
This model is a fine-tuned version of [dkleczek/bert-base-polish-cased-v1](https://huggingface.co/dkleczek/bert-base-polish-cased-v1) to predict 3-categorical sentiment. |
|
Fine-tuned on 1k sample of manually annotated Twitter data. |
|
|
|
Model developed as a part of ComPathos project: https://www.ncn.gov.pl/sites/default/files/listy-rankingowe/2020-09-30apsv2/streszczenia/497124-en.pdf |
|
|
|
``` |
|
from transformers import pipeline |
|
|
|
model_path = "eevvgg/PaReS-sentimenTw-political-PL" |
|
sentiment_task = pipeline(task = "sentiment-analysis", model = model_path, tokenizer = model_path) |
|
|
|
sequence = ["Cała ta śmieszna debata była próbą ukrycia problemów gospodarczych jakie są i nadejdą, pytania w większości o mało istotnych sprawach", |
|
"Brawo panie ministrze!"] |
|
|
|
result = sentiment_task(sequence) |
|
labels = [i['label'] for i in result] # ['Negative', 'Positive'] |
|
|
|
``` |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
Sentiment detection in Polish data (fine-tuned on tweets from political domain). |
|
|
|
|
|
## Training and evaluation data |
|
|
|
- Trained for 3 epochs, mini-batch size of 8. |
|
- Training results: loss: 0.1358926964368792 |
|
|
|
|
|
|
|
It achieves the following results on the test set (10%): |
|
|
|
- No. examples = 100 |
|
- mini batch size = 8 |
|
- accuracy = 0.950 |
|
- macro f1 = 0.944 |
|
|
|
precision recall f1-score support |
|
|
|
0 0.960 0.980 0.970 49 |
|
1 0.958 0.885 0.920 26 |
|
2 0.923 0.960 0.941 25 |
|
|
|
|
|
|