librarian-bot's picture
Librarian Bot: Add base_model information to model
b9011d9
|
raw
history blame
2.14 kB
---
language:
- pl
tags:
- text
- sentiment
- politics
metrics:
- accuracy
- f1
pipeline_tag: text-classification
widget:
- text: Przykro patrzeć, a słuchać się nie da.
example_title: example 1
- text: Oczywiście ze Pan Prezydent to nasza duma narodowa!!
example_title: example 2
base_model: dkleczek/bert-base-polish-cased-v1
model-index:
- name: PaReS-sentimenTw-political-PL
results:
- task:
type: sentiment-classification
name: Text Classification
dataset:
name: tweets_2020_electionsPL
type: tweets
metrics:
- type: f1
value: 94.4
---
# PaReS-sentimenTw-political-PL
This model is a fine-tuned version of [dkleczek/bert-base-polish-cased-v1](https://huggingface.co/dkleczek/bert-base-polish-cased-v1) to predict 3-categorical sentiment.
Fine-tuned on 1k sample of manually annotated Twitter data.
Model developed as a part of ComPathos project: https://www.ncn.gov.pl/sites/default/files/listy-rankingowe/2020-09-30apsv2/streszczenia/497124-en.pdf
```
from transformers import pipeline
model_path = "eevvgg/PaReS-sentimenTw-political-PL"
sentiment_task = pipeline(task = "sentiment-analysis", model = model_path, tokenizer = model_path)
sequence = ["Cała ta śmieszna debata była próbą ukrycia problemów gospodarczych jakie są i nadejdą, pytania w większości o mało istotnych sprawach",
"Brawo panie ministrze!"]
result = sentiment_task(sequence)
labels = [i['label'] for i in result] # ['Negative', 'Positive']
```
## Intended uses & limitations
Sentiment detection in Polish data (fine-tuned on tweets from political domain).
## Training and evaluation data
- Trained for 3 epochs, mini-batch size of 8.
- Training results: loss: 0.1358926964368792
It achieves the following results on the test set (10%):
- No. examples = 100
- mini batch size = 8
- accuracy = 0.950
- macro f1 = 0.944
precision recall f1-score support
0 0.960 0.980 0.970 49
1 0.958 0.885 0.920 26
2 0.923 0.960 0.941 25