sjd171
Add evaluation results on conll2003 dataset (#1)
0e98652
|
raw
history blame
1.81 kB
metadata
language: en
license: apache-2.0
datasets:
  - conll2003
model-index:
  - name: elastic/distilbert-base-uncased-finetuned-conll03-english
    results:
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: conll2003
          type: conll2003
          config: conll2003
          split: validation
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9854480753649896
            verified: true
          - name: Precision
            type: precision
            value: 0.9880928983228512
            verified: true
          - name: Recall
            type: recall
            value: 0.9895677847945542
            verified: true
          - name: F1
            type: f1
            value: 0.9888297915932504
            verified: true
          - name: loss
            type: loss
            value: 0.06707527488470078
            verified: true

DistilBERT base uncased, fine-tuned for NER using the conll03 english dataset. Note that this model is not sensitive to capital letters — "english" is the same as "English". For the case sensitive version, please use elastic/distilbert-base-cased-finetuned-conll03-english.

Versions

  • Transformers version: 4.3.1
  • Datasets version: 1.3.0

Training

$ run_ner.py \
  --model_name_or_path distilbert-base-uncased \
  --label_all_tokens True \
  --return_entity_level_metrics True \
  --dataset_name conll2003 \
  --output_dir /tmp/distilbert-base-uncased-finetuned-conll03-english \
  --do_train \
  --do_eval

After training, we update the labels to match the NER specific labels from the dataset conll2003