eliascc5's picture
layoutlmv3-testCUSTOMds09_02
5884538 verified
|
raw
history blame
2.36 kB
---
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-testCUSTOMds09_02
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv3-testCUSTOMds09_02
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
- Precision: 1.0
- Recall: 1.0
- F1: 1.0
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
| No log | 1.25 | 100 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
| No log | 2.5 | 200 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
| No log | 3.75 | 300 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 |
| No log | 5.0 | 400 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0185 | 6.25 | 500 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0185 | 7.5 | 600 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0185 | 8.75 | 700 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0185 | 10.0 | 800 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0185 | 11.25 | 900 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0001 | 12.5 | 1000 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1