eliascc5's picture
layoutlmv3-testCUSTOMds20_02
e113d1c verified
|
raw
history blame
2.41 kB
metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-testCUSTOMds20_02
    results: []

layoutlmv3-testCUSTOMds20_02

This model is a fine-tuned version of microsoft/layoutlmv3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1298
  • Precision: 0.8546
  • Recall: 0.8362
  • F1: 0.8453
  • Accuracy: 0.9807

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.25 100 0.0624 0.8578 0.8578 0.8578 0.9837
No log 2.5 200 0.0858 0.8603 0.8491 0.8547 0.9814
No log 3.75 300 0.0826 0.9062 0.875 0.8904 0.9859
No log 5.0 400 0.0940 0.9018 0.8707 0.8860 0.9851
0.0658 6.25 500 0.1237 0.8502 0.8319 0.8410 0.9807
0.0658 7.5 600 0.1125 0.9045 0.8578 0.8805 0.9844
0.0658 8.75 700 0.1252 0.8448 0.8448 0.8448 0.9799
0.0658 10.0 800 0.1156 0.8678 0.8491 0.8584 0.9829
0.0658 11.25 900 0.1238 0.8559 0.8448 0.8503 0.9822
0.0036 12.5 1000 0.1298 0.8546 0.8362 0.8453 0.9807

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2