passaglia's picture
Update README.md
b617fe5 verified
|
raw
history blame
4.32 kB
---
library_name: transformers
license: llama3
language:
- ja
- en
tags:
- llama-cpp
---
# Llama-3-ELYZA-JP-8B-GGUF
![Llama-3-ELYZA-JP-8B-image](./key_visual.png)
## Model Description
**Llama-3-ELYZA-JP-8B** is a large language model trained by [ELYZA, Inc](https://elyza.ai/).
Based on [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), it has been enhanced for Japanese usage through additional pre-training and instruction tuning.
For more details, please refer to [our blog post](https://note.com/elyza/n/n360b6084fdbd).
## Quantization
We have prepared two quantized model options, GGUF and AWQ. This is the GGUF (Q4_K_M) model, converted using [llama.cpp](https://github.com/ggerganov/llama.cpp).
Here is a table showing the performance degradation due to quantization.
| Model | ELYZA-tasks-100 GPT4 score |
| :-------------------------------- | ---: |
| Llama-3-ELYZA-JP-8B | 3.655 |
| Llama-3-ELYZA-JP-8B-GGUF (Q4_K_M) | 3.57 |
| Llama-3-ELYZA-JP-8B-AWQ | 3.39 |
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server.
```bash
$ llama-server \
--hf-repo elyza/Llama-3-ELYZA-JP-8B-GGUF \
--hf-file Llama-3-ELYZA-JP-8B-q4_k_m.gguf \
--port 8080
```
Call the API using curl.
```bash
$ curl http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"messages": [
{ "role": "system", "content": "あなたは誠実で優秀な日本人のアシスタントです。特に指示が無い場合は、常に日本語で回答してください。" },
{ "role": "user", "content": "古代ギリシャを学ぶ上で知っておくべきポイントは?" }
],
"temperature": 0.6,
"max_tokens": -1,
"stream": false
}'
```
Call the API using Python.
```python
import openai
client = openai.OpenAI(
base_url="http://localhost:8080/v1",
api_key = "dummy_api_key"
)
completion = client.chat.completions.create(
model="dummy_model_name",
messages=[
{"role": "system", "content": "あなたは誠実で優秀な日本人のアシスタントです。特に指示が無い場合は、常に日本語で回答してください。"},
{"role": "user", "content": "古代ギリシャを学ぶ上で知っておくべきポイントは?"}
]
)
```
## Use with Desktop App
There are various desktop applications that can handle GGUF models, but here we will introduce how to use the model in the no-code environment LM Studio.
- **Installation**: Download and install [LM Studio](https://lmstudio.ai/).
- **Downloading the Model**: Search for `elyza/Llama-3-ELYZA-JP-8B-GGUF` in the search bar on the home page 🏠, and download `Llama-3-ELYZA-JP-8B-q4_k_m.gguf`.
- **Start Chatting**: Click on 💬 in the sidebar, select `Llama-3-ELYZA-JP-8B-GGUF` from "Select a Model to load" in the header, and load the model. You can now freely chat with the local LLM.
- **Setting Options**: You can set options from the sidebar on the right. Faster inference can be achieved by setting Quick GPU Offload to Max in the GPU Settings.
- **For Developers: Starting the API Server**: Click `<->` in the left sidebar and move to the Local Server tab. Select the model and click Start Server to launch an OpenAI API-compatible API server.
## Developers
Listed in alphabetical order.
- [Masato Hirakawa](https://huggingface.co/m-hirakawa)
- [Shintaro Horie](https://huggingface.co/e-mon)
- [Tomoaki Nakamura](https://huggingface.co/tyoyo)
- [Daisuke Oba](https://huggingface.co/daisuk30ba)
- [Sam Passaglia](https://huggingface.co/passaglia)
- [Akira Sasaki](https://huggingface.co/akirasasaki)
## License
[Meta Llama 3 Community License](https://llama.meta.com/llama3/license/)
## How to Cite
```tex
@misc{elyzallama2024,
title={elyza/Llama-3-ELYZA-JP-8B},
url={https://huggingface.co/elyza/Llama-3-ELYZA-JP-8B},
author={Masato Hirakawa and Shintaro Horie and Tomoaki Nakamura and Daisuke Oba and Sam Passaglia and Akira Sasaki},
year={2024},
}
```
## Citations
```tex
@article{llama3modelcard,
title={Llama 3 Model Card},
author={AI@Meta},
year={2024},
url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}
```