passaglia's picture
Update README.md
bad0264 verified
|
raw
history blame
4.34 kB
metadata
library_name: transformers
license: llama3
language:
  - ja
  - en
tags:
  - llama-cpp

Llama-3-ELYZA-JP-8B-GGUF

Llama-3-ELYZA-JP-8B-image

Model Description

Llama-3-ELYZA-JP-8B is a large language model trained by ELYZA, Inc. Based on meta-llama/Meta-Llama-3-8B-Instruct, it has been enhanced for Japanese usage through additional pre-training and instruction tuning.

For more details, please refer to our blog post.

Quantization

We have prepared two quantized model options, GGUF and AWQ. This is the GGUF (Q4_K_M) model, converted using llama.cpp.

The following table shows the performance degradation due to quantization:

Model ELYZA-tasks-100 GPT4 score
Llama-3-ELYZA-JP-8B 3.655
Llama-3-ELYZA-JP-8B-GGUF (Q4_K_M) 3.57
Llama-3-ELYZA-JP-8B-AWQ 3.39

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux):

brew install llama.cpp

Invoke the llama.cpp server:

$ llama-server \
--hf-repo elyza/Llama-3-ELYZA-JP-8B-GGUF \
--hf-file Llama-3-ELYZA-JP-8B-q4_k_m.gguf \
--port 8080

Call the API using curl:

$ curl http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
  "messages": [
    { "role": "system", "content": "あなたは誠実で優秀な日本人のアシスタントです。特に指示が無い場合は、常に日本語で回答してください。" },
    { "role": "user", "content": "古代ギリシャを学ぶ上で知っておくべきポイントは?" }
  ],
  "temperature": 0.6,
  "max_tokens": -1,
  "stream": false
}'

Call the API using Python:

import openai

client = openai.OpenAI(
    base_url="http://localhost:8080/v1",
    api_key = "dummy_api_key"
)

completion = client.chat.completions.create(
    model="dummy_model_name",
    messages=[
        {"role": "system", "content": "あなたは誠実で優秀な日本人のアシスタントです。特に指示が無い場合は、常に日本語で回答してください。"},
        {"role": "user", "content": "古代ギリシャを学ぶ上で知っておくべきポイントは?"}
    ]
)

Use with Desktop App

There are various desktop applications that can handle GGUF models, but here we will introduce how to use the model in the no-code environment LM Studio.

  • Installation: Download and install LM Studio.
  • Downloading the Model: Search for elyza/Llama-3-ELYZA-JP-8B-GGUF in the search bar on the home page 🏠, and download Llama-3-ELYZA-JP-8B-q4_k_m.gguf.
  • Start Chatting: Click on 💬 in the sidebar, select Llama-3-ELYZA-JP-8B-GGUF from "Select a Model to load" in the header, and load the model. You can now freely chat with the local LLM.
  • Setting Options: You can set options from the sidebar on the right. Faster inference can be achieved by setting Quick GPU Offload to Max in the GPU Settings.
  • (For Developers) Starting an API Server: Click <-> in the left sidebar and move to the Local Server tab. Select the model and click Start Server to launch an OpenAI API-compatible API server.

Developers

Listed in alphabetical order.

License

Meta Llama 3 Community License

How to Cite

@misc{elyzallama2024,
      title={elyza/Llama-3-ELYZA-JP-8B},
      url={https://huggingface.co/elyza/Llama-3-ELYZA-JP-8B},
      author={Masato Hirakawa and Shintaro Horie and Tomoaki Nakamura and Daisuke Oba and Sam Passaglia and Akira Sasaki},
      year={2024},
}

Citations

@article{llama3modelcard,
    title={Llama 3 Model Card},
    author={AI@Meta},
    year={2024},
    url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}