hmBERT-CoNLL-cp3

This model is a fine-tuned version of dbmdz/bert-base-historic-multilingual-cased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0572
  • Precision: 0.9121
  • Recall: 0.9243
  • F1: 0.9182
  • Accuracy: 0.9862

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.06 25 0.4115 0.3643 0.3728 0.3685 0.9007
No log 0.11 50 0.2243 0.6393 0.6908 0.6641 0.9460
No log 0.17 75 0.1617 0.7319 0.7637 0.7475 0.9580
No log 0.23 100 0.1544 0.7282 0.7637 0.7455 0.9585
No log 0.28 125 0.1341 0.7595 0.8117 0.7847 0.9644
No log 0.34 150 0.1221 0.7980 0.8251 0.8114 0.9693
No log 0.4 175 0.1013 0.7968 0.8344 0.8152 0.9719
No log 0.46 200 0.1076 0.8265 0.8403 0.8333 0.9732
No log 0.51 225 0.0883 0.8453 0.8635 0.8543 0.9763
No log 0.57 250 0.0973 0.8439 0.8633 0.8535 0.9763
No log 0.63 275 0.0883 0.8497 0.8655 0.8575 0.9765
No log 0.68 300 0.0879 0.8462 0.8642 0.8551 0.9766
No log 0.74 325 0.0781 0.8592 0.8834 0.8711 0.9787
No log 0.8 350 0.0725 0.8697 0.8928 0.8811 0.9803
No log 0.85 375 0.0755 0.8687 0.8943 0.8813 0.9807
No log 0.91 400 0.0666 0.8781 0.9004 0.8891 0.9822
No log 0.97 425 0.0658 0.8877 0.8995 0.8936 0.9823
No log 1.03 450 0.0645 0.8951 0.9036 0.8993 0.9837
No log 1.08 475 0.0697 0.8864 0.9039 0.8951 0.9831
0.1392 1.14 500 0.0688 0.8824 0.8994 0.8908 0.9824
0.1392 1.2 525 0.0681 0.8950 0.9049 0.8999 0.9827
0.1392 1.25 550 0.0676 0.8855 0.8977 0.8915 0.9823
0.1392 1.31 575 0.0618 0.8940 0.9088 0.9014 0.9842
0.1392 1.37 600 0.0644 0.8945 0.9076 0.9010 0.9840
0.1392 1.42 625 0.0641 0.8936 0.9086 0.9010 0.9837
0.1392 1.48 650 0.0619 0.8969 0.9120 0.9044 0.9846
0.1392 1.54 675 0.0608 0.9045 0.9105 0.9075 0.9848
0.1392 1.59 700 0.0624 0.9038 0.9143 0.9091 0.9851
0.1392 1.65 725 0.0596 0.9062 0.9170 0.9116 0.9852
0.1392 1.71 750 0.0580 0.8995 0.9143 0.9069 0.9848
0.1392 1.77 775 0.0582 0.9082 0.9172 0.9127 0.9858
0.1392 1.82 800 0.0588 0.9024 0.9179 0.9101 0.9852
0.1392 1.88 825 0.0592 0.9020 0.9219 0.9119 0.9856
0.1392 1.94 850 0.0600 0.9054 0.9182 0.9118 0.9852
0.1392 1.99 875 0.0568 0.9068 0.9202 0.9135 0.9861
0.1392 2.05 900 0.0571 0.9131 0.9212 0.9171 0.9861
0.1392 2.11 925 0.0577 0.9110 0.9204 0.9157 0.9858
0.1392 2.16 950 0.0605 0.9127 0.9243 0.9185 0.9860
0.1392 2.22 975 0.0575 0.9109 0.9224 0.9166 0.9867
0.0392 2.28 1000 0.0572 0.9121 0.9243 0.9182 0.9862
0.0392 2.33 1025 0.0567 0.9171 0.9253 0.9212 0.9870
0.0392 2.39 1050 0.0570 0.9193 0.9295 0.9244 0.9871
0.0392 2.45 1075 0.0584 0.9155 0.9276 0.9215 0.9867
0.0392 2.51 1100 0.0591 0.9168 0.9286 0.9227 0.9867
0.0392 2.56 1125 0.0577 0.9182 0.9312 0.9246 0.9874
0.0392 2.62 1150 0.0570 0.9184 0.9283 0.9233 0.9870
0.0392 2.68 1175 0.0563 0.9191 0.9298 0.9245 0.9872
0.0392 2.73 1200 0.0565 0.9180 0.9313 0.9246 0.9872
0.0392 2.79 1225 0.0559 0.9190 0.9298 0.9244 0.9873
0.0392 2.85 1250 0.0562 0.9185 0.9293 0.9239 0.9873
0.0392 2.9 1275 0.0564 0.9175 0.9285 0.9230 0.9872
0.0392 2.96 1300 0.0563 0.9181 0.9295 0.9237 0.9873

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train emilys/hmBERT-CoNLL-cp3

Evaluation results