emozilla/landmark-llama-7b
This model is an out-of-the-box ready version of the LLaMA-7B variant of Landmark Attention. The original code is modified from the Landmark GitHub and the weights from here.
As a LLaMA variant, this model may be subject to the LLaMA license.
To use
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import torch
tokenizer = AutoTokenizer.from_pretrained("emozilla/landmark-llama-7b", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("emozilla/landmark-llama-7b", \
torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
print(pipe("Somebody once told me the world is gonna roll me", \
max_new_tokens=256, temperature=0.8, do_sample=True))
You can configure the Landmark parameters by editing mem_freq
, mem_top_k
, mem_max_seq_len
, and mem_max_cache_size
.
config = AutoConfig.from_pretrained("emozilla/landmark-llama-7b", trust_remote_code=True)
config.mem_top_k = 6
model = AutoModelForCausalLM.from_pretrained("emozilla/landmark-llama-7b", \
torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", config=config)
- Downloads last month
- 40
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.