anton-l's picture
anton-l HF staff
Upload README.md
359b21f
|
raw
history blame
2.17 kB
metadata
license: apache-2.0
language: sah
tags:
  - generated_from_trainer
  - robust-speech-event
datasets:
  - common_voice
model-index:
  - name: wav2vec2-large-xlsr-53-sah-CV8
    results:
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice sah
          type: common_voice
          args: sah
        metrics:
          - name: Test WER
            type: wer
            value: 56.06
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 8.0
          type: mozilla-foundation/common_voice_8_0
          args: sah
        metrics:
          - name: Test WER
            type: wer
            value: 43.75

wav2vec2-large-xlsr-53-sah-CV8

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5089
  • Wer: 0.5606

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.6849 16.67 500 1.1135 0.9344
0.8223 33.33 1000 0.5148 0.5686
0.5477 50.0 1500 0.5089 0.5606

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.1
  • Tokenizers 0.10.3