emrse's picture
layoutlmv3-finetuned-cord_100
0f1a872
metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
datasets:
  - cord-layoutlmv3
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-cord_100
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: cord-layoutlmv3
          type: cord-layoutlmv3
          config: cord
          split: test
          args: cord
        metrics:
          - name: Precision
            type: precision
            value: 0.9458456973293768
          - name: Recall
            type: recall
            value: 0.9543413173652695
          - name: F1
            type: f1
            value: 0.9500745156482863
          - name: Accuracy
            type: accuracy
            value: 0.9596774193548387

layoutlmv3-finetuned-cord_100

This model is a fine-tuned version of microsoft/layoutlmv3-base on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2123
  • Precision: 0.9458
  • Recall: 0.9543
  • F1: 0.9501
  • Accuracy: 0.9597

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.56 250 1.0095 0.7120 0.7754 0.7424 0.7946
1.3738 3.12 500 0.5732 0.8473 0.8683 0.8577 0.8714
1.3738 4.69 750 0.3840 0.8893 0.9079 0.8985 0.9181
0.4085 6.25 1000 0.2933 0.9181 0.9319 0.9250 0.9376
0.4085 7.81 1250 0.2704 0.9197 0.9349 0.9272 0.9444
0.2239 9.38 1500 0.2504 0.9369 0.9454 0.9411 0.9508
0.2239 10.94 1750 0.2375 0.9288 0.9379 0.9333 0.9465
0.1544 12.5 2000 0.2326 0.9423 0.9528 0.9475 0.9576
0.1544 14.06 2250 0.2147 0.9530 0.9566 0.9548 0.9610
0.1231 15.62 2500 0.2123 0.9458 0.9543 0.9501 0.9597

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1