metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-brain-tumour-v2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: essam24/brain-tumour-v2
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8703703703703703
vit-brain-tumour-v2
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the essam24/brain-tumour-v2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.5359
- Accuracy: 0.8704
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.1236 | 0.5128 | 100 | 0.5990 | 0.8481 |
0.1695 | 1.0256 | 200 | 0.5359 | 0.8704 |
0.0186 | 1.5385 | 300 | 0.5705 | 0.8975 |
0.0368 | 2.0513 | 400 | 0.6136 | 0.8975 |
0.0036 | 2.5641 | 500 | 0.6122 | 0.9012 |
0.0029 | 3.0769 | 600 | 0.6067 | 0.9025 |
0.0027 | 3.5897 | 700 | 0.6449 | 0.9025 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1