vit-brain-tumour-v2 / README.md
essam24's picture
initial commit
299cc86 verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - image-classification
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-brain-tumour-v2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: essam24/brain-tumour-v2
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8703703703703703

vit-brain-tumour-v2

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the essam24/brain-tumour-v2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5359
  • Accuracy: 0.8704

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1236 0.5128 100 0.5990 0.8481
0.1695 1.0256 200 0.5359 0.8704
0.0186 1.5385 300 0.5705 0.8975
0.0368 2.0513 400 0.6136 0.8975
0.0036 2.5641 500 0.6122 0.9012
0.0029 3.0769 600 0.6067 0.9025
0.0027 3.5897 700 0.6449 0.9025

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1