swin-tiny-patch4-window7-224-seg-swin-amal-finetuned-eurosat
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 5.6236
- Accuracy: 0.4528
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 200
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.1452 | 1.0 | 268 | 2.2034 | 0.2247 |
0.9905 | 2.0 | 536 | 0.9729 | 0.7126 |
0.5262 | 3.0 | 804 | 0.5282 | 0.8314 |
0.36 | 4.0 | 1072 | 0.5618 | 0.8337 |
0.305 | 5.0 | 1340 | 0.9210 | 0.6535 |
0.2669 | 6.0 | 1608 | 1.1776 | 0.6317 |
0.2663 | 7.0 | 1876 | 1.2129 | 0.6290 |
0.2207 | 8.0 | 2144 | 2.2039 | 0.4068 |
0.2178 | 9.0 | 2412 | 1.9747 | 0.4740 |
0.1822 | 10.0 | 2680 | 1.4390 | 0.5526 |
0.1691 | 11.0 | 2948 | 2.1020 | 0.3814 |
0.1731 | 12.0 | 3216 | 2.0999 | 0.4251 |
0.1705 | 13.0 | 3484 | 2.4643 | 0.3700 |
0.1286 | 14.0 | 3752 | 2.7902 | 0.4345 |
0.1511 | 15.0 | 4020 | 2.5151 | 0.4165 |
0.1403 | 16.0 | 4288 | 4.4323 | 0.3099 |
0.1562 | 17.0 | 4556 | 2.0293 | 0.5096 |
0.1233 | 18.0 | 4824 | 2.5863 | 0.4236 |
0.1293 | 19.0 | 5092 | 2.6533 | 0.4506 |
0.1268 | 20.0 | 5360 | 2.1429 | 0.4998 |
0.1464 | 21.0 | 5628 | 2.3014 | 0.5470 |
0.1507 | 22.0 | 5896 | 2.3857 | 0.4911 |
0.1285 | 23.0 | 6164 | 1.4228 | 0.6406 |
0.1364 | 24.0 | 6432 | 3.6147 | 0.4842 |
0.1209 | 25.0 | 6700 | 2.4210 | 0.4896 |
0.1321 | 26.0 | 6968 | 2.7809 | 0.5344 |
0.0944 | 27.0 | 7236 | 3.5598 | 0.4226 |
0.1013 | 28.0 | 7504 | 4.0793 | 0.3905 |
0.1243 | 29.0 | 7772 | 4.5733 | 0.3443 |
0.0962 | 30.0 | 8040 | 2.9494 | 0.4199 |
0.0974 | 31.0 | 8308 | 3.1012 | 0.4496 |
0.113 | 32.0 | 8576 | 3.9522 | 0.3764 |
0.1067 | 33.0 | 8844 | 1.9792 | 0.6053 |
0.095 | 34.0 | 9112 | 2.8795 | 0.5302 |
0.1015 | 35.0 | 9380 | 5.9943 | 0.2941 |
0.0912 | 36.0 | 9648 | 2.9536 | 0.5242 |
0.1193 | 37.0 | 9916 | 3.5187 | 0.4226 |
0.0906 | 38.0 | 10184 | 3.0049 | 0.5114 |
0.1109 | 39.0 | 10452 | 2.6823 | 0.5675 |
0.0903 | 40.0 | 10720 | 4.7151 | 0.3109 |
0.0846 | 41.0 | 10988 | 3.1118 | 0.3880 |
0.0986 | 42.0 | 11256 | 3.9827 | 0.4792 |
0.1244 | 43.0 | 11524 | 4.7544 | 0.2860 |
0.1039 | 44.0 | 11792 | 4.4297 | 0.3178 |
0.077 | 45.0 | 12060 | 5.8973 | 0.3524 |
0.0718 | 46.0 | 12328 | 6.0338 | 0.3033 |
0.0838 | 47.0 | 12596 | 6.3524 | 0.3507 |
0.0935 | 48.0 | 12864 | 3.8675 | 0.4194 |
0.0922 | 49.0 | 13132 | 4.7731 | 0.3129 |
0.0903 | 50.0 | 13400 | 3.5435 | 0.4115 |
0.0927 | 51.0 | 13668 | 4.7606 | 0.4234 |
0.0757 | 52.0 | 13936 | 3.4110 | 0.4436 |
0.0738 | 53.0 | 14204 | 6.3143 | 0.3648 |
0.076 | 54.0 | 14472 | 4.9524 | 0.3604 |
0.0951 | 55.0 | 14740 | 5.5633 | 0.3680 |
0.1078 | 56.0 | 15008 | 5.9219 | 0.3082 |
0.0991 | 57.0 | 15276 | 4.9457 | 0.3344 |
0.0968 | 58.0 | 15544 | 4.0270 | 0.4271 |
0.0883 | 59.0 | 15812 | 5.3006 | 0.3574 |
0.0728 | 60.0 | 16080 | 6.9527 | 0.3119 |
0.0803 | 61.0 | 16348 | 2.9117 | 0.5 |
0.1022 | 62.0 | 16616 | 5.1631 | 0.3487 |
0.1155 | 63.0 | 16884 | 5.2602 | 0.3453 |
0.0737 | 64.0 | 17152 | 6.5281 | 0.3129 |
0.0735 | 65.0 | 17420 | 4.9847 | 0.3945 |
0.0948 | 66.0 | 17688 | 3.6684 | 0.4330 |
0.0765 | 67.0 | 17956 | 4.2188 | 0.4076 |
0.0597 | 68.0 | 18224 | 3.0067 | 0.5208 |
0.0866 | 69.0 | 18492 | 3.8993 | 0.4412 |
0.0825 | 70.0 | 18760 | 3.9058 | 0.3945 |
0.0897 | 71.0 | 19028 | 4.5870 | 0.3932 |
0.0687 | 72.0 | 19296 | 4.2837 | 0.3744 |
0.0774 | 73.0 | 19564 | 4.9028 | 0.3596 |
0.0755 | 74.0 | 19832 | 5.1321 | 0.3356 |
0.0728 | 75.0 | 20100 | 4.5533 | 0.3851 |
0.0753 | 76.0 | 20368 | 4.9765 | 0.3898 |
0.0582 | 77.0 | 20636 | 5.1959 | 0.3777 |
0.0714 | 78.0 | 20904 | 4.6735 | 0.3707 |
0.0928 | 79.0 | 21172 | 3.6359 | 0.4639 |
0.0593 | 80.0 | 21440 | 5.1507 | 0.3841 |
0.0972 | 81.0 | 21708 | 5.3122 | 0.3356 |
0.0903 | 82.0 | 21976 | 3.5833 | 0.4310 |
0.074 | 83.0 | 22244 | 2.3014 | 0.6349 |
0.0651 | 84.0 | 22512 | 3.8229 | 0.4387 |
0.0682 | 85.0 | 22780 | 3.5292 | 0.4627 |
0.0543 | 86.0 | 23048 | 4.0542 | 0.4266 |
0.0776 | 87.0 | 23316 | 3.8799 | 0.5240 |
0.0868 | 88.0 | 23584 | 4.1896 | 0.4750 |
0.0711 | 89.0 | 23852 | 3.1013 | 0.5381 |
0.077 | 90.0 | 24120 | 2.9132 | 0.5650 |
0.0672 | 91.0 | 24388 | 4.4834 | 0.3806 |
0.0737 | 92.0 | 24656 | 4.0161 | 0.5116 |
0.0868 | 93.0 | 24924 | 2.9386 | 0.4956 |
0.0778 | 94.0 | 25192 | 4.4806 | 0.4478 |
0.0586 | 95.0 | 25460 | 5.0668 | 0.4313 |
0.0713 | 96.0 | 25728 | 6.4632 | 0.3043 |
0.0897 | 97.0 | 25996 | 5.0227 | 0.4674 |
0.073 | 98.0 | 26264 | 3.6177 | 0.4854 |
0.0775 | 99.0 | 26532 | 5.5003 | 0.3702 |
0.0709 | 100.0 | 26800 | 5.6101 | 0.3863 |
0.078 | 101.0 | 27068 | 4.3187 | 0.4338 |
0.0702 | 102.0 | 27336 | 4.8467 | 0.4545 |
0.0498 | 103.0 | 27604 | 3.9094 | 0.4511 |
0.0785 | 104.0 | 27872 | 4.0952 | 0.3836 |
0.0767 | 105.0 | 28140 | 3.2816 | 0.4909 |
0.0611 | 106.0 | 28408 | 5.2239 | 0.4221 |
0.0753 | 107.0 | 28676 | 4.2586 | 0.4493 |
0.0758 | 108.0 | 28944 | 3.6094 | 0.4938 |
0.0951 | 109.0 | 29212 | 6.1982 | 0.3453 |
0.086 | 110.0 | 29480 | 6.4891 | 0.3191 |
0.0701 | 111.0 | 29748 | 5.8145 | 0.3235 |
0.0772 | 112.0 | 30016 | 3.7809 | 0.5133 |
0.0705 | 113.0 | 30284 | 4.9590 | 0.4372 |
0.0602 | 114.0 | 30552 | 5.5669 | 0.3959 |
0.0671 | 115.0 | 30820 | 4.4897 | 0.4429 |
0.0692 | 116.0 | 31088 | 5.1358 | 0.3319 |
0.0675 | 117.0 | 31356 | 5.0169 | 0.4226 |
0.0626 | 118.0 | 31624 | 5.6420 | 0.4170 |
0.0537 | 119.0 | 31892 | 5.1601 | 0.3683 |
0.0543 | 120.0 | 32160 | 5.4460 | 0.3663 |
0.0601 | 121.0 | 32428 | 7.2877 | 0.2981 |
0.0743 | 122.0 | 32696 | 6.5134 | 0.3337 |
0.0558 | 123.0 | 32964 | 4.4690 | 0.4469 |
0.0396 | 124.0 | 33232 | 4.4964 | 0.4212 |
0.0704 | 125.0 | 33500 | 4.5766 | 0.4011 |
0.0547 | 126.0 | 33768 | 4.0679 | 0.4538 |
0.0643 | 127.0 | 34036 | 3.3335 | 0.4545 |
0.0709 | 128.0 | 34304 | 3.6568 | 0.4750 |
0.0932 | 129.0 | 34572 | 4.7978 | 0.4614 |
0.0522 | 130.0 | 34840 | 6.1548 | 0.3366 |
0.0592 | 131.0 | 35108 | 5.0728 | 0.4409 |
0.0528 | 132.0 | 35376 | 5.5127 | 0.4088 |
0.087 | 133.0 | 35644 | 4.5838 | 0.3900 |
0.0566 | 134.0 | 35912 | 4.8733 | 0.3683 |
0.0474 | 135.0 | 36180 | 3.4370 | 0.4348 |
0.0517 | 136.0 | 36448 | 4.5547 | 0.3908 |
0.0627 | 137.0 | 36716 | 4.7011 | 0.4048 |
0.0693 | 138.0 | 36984 | 4.8039 | 0.4419 |
0.0753 | 139.0 | 37252 | 4.6905 | 0.4674 |
0.0542 | 140.0 | 37520 | 4.4103 | 0.4278 |
0.0629 | 141.0 | 37788 | 4.5332 | 0.4402 |
0.0636 | 142.0 | 38056 | 4.4822 | 0.4288 |
0.0551 | 143.0 | 38324 | 5.3970 | 0.3885 |
0.0677 | 144.0 | 38592 | 4.9337 | 0.3811 |
0.037 | 145.0 | 38860 | 4.7588 | 0.3979 |
0.0426 | 146.0 | 39128 | 4.5055 | 0.4110 |
0.0624 | 147.0 | 39396 | 4.9575 | 0.3722 |
0.0799 | 148.0 | 39664 | 3.9235 | 0.4350 |
0.0643 | 149.0 | 39932 | 3.2063 | 0.5297 |
0.0687 | 150.0 | 40200 | 3.1733 | 0.5692 |
0.0652 | 151.0 | 40468 | 3.8738 | 0.5178 |
0.078 | 152.0 | 40736 | 2.7892 | 0.5319 |
0.0644 | 153.0 | 41004 | 3.4909 | 0.5185 |
0.0639 | 154.0 | 41272 | 3.7233 | 0.5005 |
0.0517 | 155.0 | 41540 | 4.9475 | 0.4152 |
0.0546 | 156.0 | 41808 | 5.0784 | 0.4251 |
0.0704 | 157.0 | 42076 | 5.3511 | 0.3987 |
0.0753 | 158.0 | 42344 | 5.0345 | 0.4538 |
0.0504 | 159.0 | 42612 | 4.1655 | 0.4701 |
0.0645 | 160.0 | 42880 | 3.9242 | 0.4936 |
0.0543 | 161.0 | 43148 | 4.8499 | 0.4533 |
0.0592 | 162.0 | 43416 | 5.1871 | 0.4345 |
0.0716 | 163.0 | 43684 | 5.4487 | 0.4325 |
0.0613 | 164.0 | 43952 | 4.3626 | 0.4711 |
0.0616 | 165.0 | 44220 | 4.8649 | 0.4807 |
0.0506 | 166.0 | 44488 | 4.1038 | 0.5133 |
0.0802 | 167.0 | 44756 | 5.0038 | 0.4889 |
0.0672 | 168.0 | 45024 | 6.3643 | 0.4009 |
0.0562 | 169.0 | 45292 | 6.1359 | 0.4372 |
0.0367 | 170.0 | 45560 | 5.6726 | 0.4340 |
0.0687 | 171.0 | 45828 | 5.2015 | 0.4254 |
0.061 | 172.0 | 46096 | 5.0398 | 0.4491 |
0.0444 | 173.0 | 46364 | 5.8819 | 0.4414 |
0.0685 | 174.0 | 46632 | 6.0729 | 0.4263 |
0.0548 | 175.0 | 46900 | 5.6388 | 0.4298 |
0.084 | 176.0 | 47168 | 6.3042 | 0.4090 |
0.0575 | 177.0 | 47436 | 6.3381 | 0.4019 |
0.0678 | 178.0 | 47704 | 6.3679 | 0.4100 |
0.0445 | 179.0 | 47972 | 6.3634 | 0.4152 |
0.081 | 180.0 | 48240 | 6.4057 | 0.4051 |
0.0643 | 181.0 | 48508 | 6.6593 | 0.3648 |
0.0497 | 182.0 | 48776 | 6.7469 | 0.3799 |
0.0568 | 183.0 | 49044 | 5.9056 | 0.4221 |
0.0513 | 184.0 | 49312 | 6.4656 | 0.4046 |
0.0496 | 185.0 | 49580 | 6.1444 | 0.4140 |
0.0524 | 186.0 | 49848 | 5.9295 | 0.4357 |
0.0746 | 187.0 | 50116 | 5.6245 | 0.4612 |
0.0489 | 188.0 | 50384 | 5.6278 | 0.4476 |
0.0589 | 189.0 | 50652 | 5.6629 | 0.4595 |
0.0365 | 190.0 | 50920 | 5.9882 | 0.4392 |
0.0456 | 191.0 | 51188 | 6.0186 | 0.4496 |
0.0486 | 192.0 | 51456 | 5.6916 | 0.4427 |
0.0658 | 193.0 | 51724 | 5.7638 | 0.4461 |
0.0599 | 194.0 | 51992 | 5.7886 | 0.4387 |
0.0522 | 195.0 | 52260 | 5.7112 | 0.4464 |
0.0556 | 196.0 | 52528 | 5.7411 | 0.4419 |
0.0681 | 197.0 | 52796 | 5.6449 | 0.4516 |
0.0649 | 198.0 | 53064 | 5.6714 | 0.4508 |
0.0582 | 199.0 | 53332 | 5.6241 | 0.4521 |
0.0727 | 200.0 | 53600 | 5.6236 | 0.4528 |
Framework versions
- Transformers 4.20.1
- Pytorch 1.12.1+cu102
- Datasets 2.3.2
- Tokenizers 0.12.1
- Downloads last month
- 31
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.