Edit model card

faceradix/llava-phi-3-mini-xtuner-Q4_K_M-GGUF

This model was converted to GGUF format from xtuner/llava-phi-3-mini-xtuner using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo faceradix/llava-phi-3-mini-xtuner-Q4_K_M-GGUF --hf-file llava-phi-3-mini-xtuner-q4_k_m.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo faceradix/llava-phi-3-mini-xtuner-Q4_K_M-GGUF --hf-file llava-phi-3-mini-xtuner-q4_k_m.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo faceradix/llava-phi-3-mini-xtuner-Q4_K_M-GGUF --hf-file llava-phi-3-mini-xtuner-q4_k_m.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo faceradix/llava-phi-3-mini-xtuner-Q4_K_M-GGUF --hf-file llava-phi-3-mini-xtuner-q4_k_m.gguf -c 2048
Downloads last month
319
GGUF
Model size
3.82B params
Architecture
llama

4-bit

Inference Examples
Inference API (serverless) does not yet support xtuner models for this pipeline type.

Model tree for faceradix/llava-phi-3-mini-xtuner-Q4_K_M-GGUF

Quantized
(1)
this model

Dataset used to train faceradix/llava-phi-3-mini-xtuner-Q4_K_M-GGUF