See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- b99507c826e2be9c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/b99507c826e2be9c_train_data.json
type:
field_input: evidence
field_instruction: question
field_output: SQL
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
ddp_find_unused_parameters: false
distributed_type: ddp
early_stopping_patience: null
env:
CUDA_VISIBLE_DEVICES: 0,1
MASTER_ADDR: localhost
MASTER_PORT: '29500'
NCCL_DEBUG: INFO
NCCL_IB_DISABLE: '1'
NCCL_P2P_DISABLE: '1'
PYTORCH_CUDA_ALLOC_CONF: expandable_segments:True, max_split_size_mb:512, garbage_collection_threshold:0.8
WORLD_SIZE: '2'
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: fats-fme/62e8d22f-0c7c-426d-aa67-4b20b4d9c2ba
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory_MB: 35000
max_steps: 10
micro_batch_size: 2
mlflow_experiment_name: /tmp/b99507c826e2be9c_train_data.json
model_type: AutoModelForCausalLM
num_devices: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 4056
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 62e8d22f-0c7c-426d-aa67-4b20b4d9c2ba
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 62e8d22f-0c7c-426d-aa67-4b20b4d9c2ba
warmup_steps: 10
world_size: 2
xformers_attention: true
62e8d22f-0c7c-426d-aa67-4b20b4d9c2ba
This model is a fine-tuned version of NousResearch/Nous-Hermes-2-Mistral-7B-DPO on the None dataset. It achieves the following results on the evaluation set:
- Loss: nan
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.0 | 0.0018 | 1 | nan |
0.0 | 0.0055 | 3 | nan |
0.0 | 0.0109 | 6 | nan |
0.0 | 0.0164 | 9 | nan |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 10
Model tree for fats-fme/62e8d22f-0c7c-426d-aa67-4b20b4d9c2ba
Base model
mistralai/Mistral-7B-v0.1