camembert-ner-finetuned-jul

This model is a fine-tuned version of Jean-Baptiste/camembert-ner on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1177
  • Loc: {'precision': 0.7309417040358744, 'recall': 0.7546296296296297, 'f1': 0.7425968109339408, 'number': 216}
  • Misc: {'precision': 0.5862068965517241, 'recall': 0.425, 'f1': 0.4927536231884058, 'number': 40}
  • Org: {'precision': 0.8333333333333334, 'recall': 0.825, 'f1': 0.8291457286432161, 'number': 200}
  • Per: {'precision': 0.7823834196891192, 'recall': 0.7704081632653061, 'f1': 0.776349614395887, 'number': 196}
  • Overall Precision: 0.7714
  • Overall Recall: 0.7607
  • Overall F1: 0.7660
  • Overall Accuracy: 0.9812

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Loc Misc Org Per Overall Precision Overall Recall Overall F1 Overall Accuracy
No log 1.0 408 0.0602 {'precision': 0.6894977168949772, 'recall': 0.7330097087378641, 'f1': 0.7105882352941175, 'number': 206} {'precision': 0.8461538461538461, 'recall': 0.2972972972972973, 'f1': 0.44000000000000006, 'number': 37} {'precision': 0.7472527472527473, 'recall': 0.7472527472527473, 'f1': 0.7472527472527473, 'number': 182} {'precision': 0.8195876288659794, 'recall': 0.7571428571428571, 'f1': 0.787128712871287, 'number': 210} 0.7516 0.7197 0.7353 0.9830
0.0903 2.0 816 0.0568 {'precision': 0.776255707762557, 'recall': 0.8252427184466019, 'f1': 0.7999999999999999, 'number': 206} {'precision': 0.5217391304347826, 'recall': 0.32432432432432434, 'f1': 0.4, 'number': 37} {'precision': 0.7731958762886598, 'recall': 0.8241758241758241, 'f1': 0.7978723404255318, 'number': 182} {'precision': 0.822429906542056, 'recall': 0.8380952380952381, 'f1': 0.830188679245283, 'number': 210} 0.7815 0.8 0.7907 0.9845
0.0357 3.0 1224 0.0631 {'precision': 0.7339055793991416, 'recall': 0.8300970873786407, 'f1': 0.7790432801822323, 'number': 206} {'precision': 0.6363636363636364, 'recall': 0.3783783783783784, 'f1': 0.4745762711864407, 'number': 37} {'precision': 0.7969543147208121, 'recall': 0.8626373626373627, 'f1': 0.8284960422163589, 'number': 182} {'precision': 0.8317757009345794, 'recall': 0.8476190476190476, 'f1': 0.839622641509434, 'number': 210} 0.7808 0.8189 0.7994 0.9851
0.0201 4.0 1632 0.0761 {'precision': 0.772093023255814, 'recall': 0.8058252427184466, 'f1': 0.7885985748218527, 'number': 206} {'precision': 0.6, 'recall': 0.32432432432432434, 'f1': 0.4210526315789474, 'number': 37} {'precision': 0.8263157894736842, 'recall': 0.8626373626373627, 'f1': 0.8440860215053764, 'number': 182} {'precision': 0.8293838862559242, 'recall': 0.8333333333333334, 'f1': 0.8313539192399049, 'number': 210} 0.8019 0.8031 0.8025 0.9846
0.0113 5.0 2040 0.0745 {'precision': 0.7477876106194691, 'recall': 0.8203883495145631, 'f1': 0.7824074074074074, 'number': 206} {'precision': 0.4666666666666667, 'recall': 0.3783783783783784, 'f1': 0.417910447761194, 'number': 37} {'precision': 0.8229166666666666, 'recall': 0.8681318681318682, 'f1': 0.8449197860962567, 'number': 182} {'precision': 0.8388625592417062, 'recall': 0.8428571428571429, 'f1': 0.840855106888361, 'number': 210} 0.7860 0.8157 0.8006 0.9849
0.0113 6.0 2448 0.0815 {'precision': 0.7654867256637168, 'recall': 0.8398058252427184, 'f1': 0.8009259259259259, 'number': 206} {'precision': 0.43333333333333335, 'recall': 0.35135135135135137, 'f1': 0.3880597014925374, 'number': 37} {'precision': 0.8253968253968254, 'recall': 0.8571428571428571, 'f1': 0.8409703504043127, 'number': 182} {'precision': 0.8673469387755102, 'recall': 0.8095238095238095, 'f1': 0.8374384236453202, 'number': 210} 0.7988 0.8063 0.8025 0.9844
0.0085 7.0 2856 0.0850 {'precision': 0.7579908675799086, 'recall': 0.8058252427184466, 'f1': 0.7811764705882352, 'number': 206} {'precision': 0.5416666666666666, 'recall': 0.35135135135135137, 'f1': 0.4262295081967213, 'number': 37} {'precision': 0.828125, 'recall': 0.8736263736263736, 'f1': 0.8502673796791443, 'number': 182} {'precision': 0.8805970149253731, 'recall': 0.8428571428571429, 'f1': 0.8613138686131387, 'number': 210} 0.8097 0.8110 0.8104 0.9853
0.0045 8.0 3264 0.0846 {'precision': 0.7321428571428571, 'recall': 0.7961165048543689, 'f1': 0.7627906976744185, 'number': 206} {'precision': 0.4642857142857143, 'recall': 0.35135135135135137, 'f1': 0.39999999999999997, 'number': 37} {'precision': 0.8172043010752689, 'recall': 0.8351648351648352, 'f1': 0.8260869565217392, 'number': 182} {'precision': 0.8756218905472637, 'recall': 0.8380952380952381, 'f1': 0.856447688564477, 'number': 210} 0.7903 0.7953 0.7928 0.9847
0.0044 9.0 3672 0.0845 {'precision': 0.7614678899082569, 'recall': 0.8058252427184466, 'f1': 0.7830188679245284, 'number': 206} {'precision': 0.48148148148148145, 'recall': 0.35135135135135137, 'f1': 0.40625, 'number': 37} {'precision': 0.8297872340425532, 'recall': 0.8571428571428571, 'f1': 0.8432432432432433, 'number': 182} {'precision': 0.8811881188118812, 'recall': 0.8476190476190476, 'f1': 0.8640776699029127, 'number': 210} 0.8079 0.8079 0.8079 0.9854
0.0031 10.0 4080 0.0855 {'precision': 0.7568807339449541, 'recall': 0.8009708737864077, 'f1': 0.7783018867924528, 'number': 206} {'precision': 0.4482758620689655, 'recall': 0.35135135135135137, 'f1': 0.393939393939394, 'number': 37} {'precision': 0.8297872340425532, 'recall': 0.8571428571428571, 'f1': 0.8432432432432433, 'number': 182} {'precision': 0.8855721393034826, 'recall': 0.8476190476190476, 'f1': 0.8661800486618005, 'number': 210} 0.8050 0.8063 0.8057 0.9852

Framework versions

  • Transformers 4.29.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.