metadata
license: apache-2.0
tags:
- merge
- mergekit
- mistral
- fhai50032/RolePlayLake-7B
- mlabonne/NeuralBeagle14-7B
base_model:
- fhai50032/RolePlayLake-7B
- mlabonne/NeuralBeagle14-7B
model-index:
- name: BeagleLake-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 70.39
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.38
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.25
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 64.92
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.19
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.91
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B
name: Open LLM Leaderboard
BeagleLake-7B
BeagleLake-7B is a merge of the following models :
Merging models are not powerful but are helpful in the case that it can work like Transfer Learning similar idk.. But they perform high on Leaderboard For ex. NeuralBeagle is powerful model with lot of potential to grow and RolePlayLake is Suitable for RP (No-Simping) and is significantly uncensored and nice obligations Fine-tuning a Merged model as a base model is surely a way to look forward and see a lot of potential going forward..
Much thanks to Charles Goddard for making simple interface 'mergekit'
🧩 Configuration
models:
- model: mlabonne/NeuralBeagle14-7B
# no params for base model
- model: fhai50032/RolePlayLake-7B
parameters:
weight: 0.8
density: 0.6
- model: mlabonne/NeuralBeagle14-7B
parameters:
weight: 0.3
density: [0.1,0.3,0.5,0.7,1]
merge_method: dare_ties
base_model: mlabonne/NeuralBeagle14-7B
parameters:
normalize: true
int8_mask: true
dtype: float16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "fhai50032/BeagleLake-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 72.34 |
AI2 Reasoning Challenge (25-Shot) | 70.39 |
HellaSwag (10-Shot) | 87.38 |
MMLU (5-Shot) | 64.25 |
TruthfulQA (0-shot) | 64.92 |
Winogrande (5-shot) | 83.19 |
GSM8k (5-shot) | 63.91 |