Edit model card

xLakeChat

xLakeChat is a merge of the following models

🧩 Configuration

models:
  - model: senseable/WestLake-7B-v2
# no params for base model
  - model: xDAN-AI/xDAN-L1-Chat-RL-v1
    parameters:
      weight: 0.73
      density: 0.64
  - model: fhai50032/BeagleLake-7B-Toxic
    parameters:
      weight: 0.46
      density: 0.55
merge_method: dare_ties
base_model: senseable/WestLake-7B-v2
parameters:
  normalize: true
  int8_mask: true
dtype: float16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "fhai50032/xLakeChat"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 63.72
AI2 Reasoning Challenge (25-Shot) 62.37
HellaSwag (10-Shot) 82.64
MMLU (5-Shot) 59.32
TruthfulQA (0-shot) 52.96
Winogrande (5-shot) 74.74
GSM8k (5-shot) 50.27
Downloads last month
75
Safetensors
Model size
7.24B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for fhai50032/xLakeChat

Evaluation results