distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.88

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1317 1.0 75 2.0386 0.33
1.36 2.0 150 1.4142 0.58
1.1456 3.0 225 1.1110 0.66
0.6417 4.0 300 1.0142 0.69
0.3324 5.0 375 0.5881 0.82
0.2208 6.0 450 0.5516 0.84
0.3346 7.0 525 0.5267 0.87
0.2309 8.0 600 0.7404 0.8
0.0267 9.0 675 0.6636 0.8
0.0309 10.0 750 0.6390 0.84
0.0076 11.0 825 0.6949 0.85
0.0053 12.0 900 0.6405 0.87
0.005 13.0 975 0.7065 0.84
0.004 14.0 1050 0.8570 0.84
0.0031 15.0 1125 0.6735 0.88
0.0028 16.0 1200 0.7023 0.85
0.0027 17.0 1275 0.6823 0.86
0.0369 18.0 1350 0.7320 0.85
0.0024 19.0 1425 0.6656 0.86
0.0023 20.0 1500 0.6628 0.86

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
40
Safetensors
Model size
23.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for flaneur-ml/distilhubert-finetuned-gtzan

Finetuned
(400)
this model

Dataset used to train flaneur-ml/distilhubert-finetuned-gtzan

Evaluation results