|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
datasets: |
|
- code_search_net |
|
--- |
|
|
|
# flax-sentence-embeddings/st-codesearch-distilroberta-base |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. |
|
|
|
It was trained on the [code_search_net](https://huggingface.co/datasets/code_search_net) dataset and can be used to search program code given text. |
|
|
|
## Usage: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer, util |
|
|
|
|
|
#This list the defines the different programm codes |
|
code = ["""def sort_list(x): |
|
return sorted(x)""", |
|
"""def count_above_threshold(elements, threshold=0): |
|
counter = 0 |
|
for e in elements: |
|
if e > threshold: |
|
counter += 1 |
|
return counter""", |
|
"""def find_min_max(elements): |
|
min_ele = 99999 |
|
max_ele = -99999 |
|
for e in elements: |
|
if e < min_ele: |
|
min_ele = e |
|
if e > max_ele: |
|
max_ele = e |
|
return min_ele, max_ele"""] |
|
|
|
|
|
model = SentenceTransformer("flax-sentence-embeddings/st-codesearch-distilroberta-base") |
|
|
|
# Encode our code into the vector space |
|
code_emb = model.encode(code, convert_to_tensor=True) |
|
|
|
# Interactive demo: Enter queries, and the method returns the best function from the |
|
# 3 functions we defined |
|
while True: |
|
query = input("Query: ") |
|
query_emb = model.encode(query, convert_to_tensor=True) |
|
hits = util.semantic_search(query_emb, code_emb)[0] |
|
top_hit = hits[0] |
|
|
|
print("Cossim: {:.2f}".format(top_hit['score'])) |
|
print(code[top_hit['corpus_id']]) |
|
print("\n\n") |
|
``` |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["This is an example sentence", "Each sentence is converted"] |
|
|
|
model = SentenceTransformer('flax-sentence-embeddings/st-codesearch-distilroberta-base') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
|
|
## Training |
|
|
|
The model was trained with a DistilRoBERTa-base model for 10k training steps on the codesearch dataset with batch_size 256 and MultipleNegativesRankingLoss. |
|
|
|
It is some preliminary model. It was neither tested nor was the trained quite sophisticated |
|
|
|
|
|
The model was trained with the parameters: |
|
|
|
**DataLoader**: |
|
|
|
`MultiDatasetDataLoader.MultiDatasetDataLoader` of length 5371 with parameters: |
|
``` |
|
{'batch_size': 256} |
|
``` |
|
|
|
**Loss**: |
|
|
|
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: |
|
``` |
|
{'scale': 20, 'similarity_fct': 'dot_score'} |
|
``` |
|
|
|
Parameters of the fit()-Method: |
|
``` |
|
{ |
|
"callback": null, |
|
"epochs": 1, |
|
"evaluation_steps": 0, |
|
"evaluator": "NoneType", |
|
"max_grad_norm": 1, |
|
"optimizer_class": "<class 'transformers.optimization.AdamW'>", |
|
"optimizer_params": { |
|
"lr": 2e-05 |
|
}, |
|
"scheduler": "warmupconstant", |
|
"steps_per_epoch": 10000, |
|
"warmup_steps": 500, |
|
"weight_decay": 0.01 |
|
} |
|
``` |
|
|
|
|
|
## Full Model Architecture |
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Citing & Authors |
|
|
|
<!--- Describe where people can find more information --> |