metadata
tags:
- text-generation
- fill-mask
language: Chinese
widget:
- text: 北京是[MASK]的首都。
Chinese CPT-Large
Model description
This is an implementation of CPT-Large. To use CPT, please import the file modeling_cpt.py
(Download Here) that define the architecture of CPT into your project.
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation
Yunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai, Fei Yang, Li Zhe, Hujun Bao, Xipeng Qiu
Github Link: https://github.com/fastnlp/CPT
Usage
>>> from modeling_cpt import CPTForConditionalGeneration
>>> from transformers import BertTokenizer
>>> tokenizer = BertTokenizer.from_pretrained("fnlp/cpt-large")
>>> model = CPTForConditionalGeneration.from_pretrained("fnlp/cpt-large")
>>> inputs = tokenizer.encode("北京是[MASK]的首都", return_tensors='pt')
>>> pred_ids = model.generate(input_ids, num_beams=4, max_length=20)
>>> print(tokenizer.convert_ids_to_tokens(pred_ids[i]))
['[SEP]', '[CLS]', '北', '京', '是', 'ä¸', '国', 'çš„', '首', '都', '[SEP]']
Note: Please use BertTokenizer for the model vocabulary. DO NOT use original BartTokenizer.
Citation
@article{shao2021cpt,
title={CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation},
author={Yunfan Shao and Zhichao Geng and Yitao Liu and Junqi Dai and Fei Yang and Li Zhe and Hujun Bao and Xipeng Qiu},
journal={arXiv preprint arXiv:2109.05729},
year={2021}
}