|
--- |
|
base_model: mistralai/Mistral-7B-Instruct-v0.3 |
|
datasets: |
|
- generator |
|
library_name: peft |
|
license: apache-2.0 |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: Mistral-7B-text-to-sql-flash-attention-2-FAISS-10epoch |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Mistral-7B-text-to-sql-flash-attention-2-FAISS-10epoch |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the generator dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4891 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 3 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 24 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant |
|
- lr_scheduler_warmup_ratio: 0.03 |
|
- lr_scheduler_warmup_steps: 15 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 2.1635 | 0.2005 | 10 | 0.7133 | |
|
| 0.6525 | 0.4010 | 20 | 0.5602 | |
|
| 0.5386 | 0.6015 | 30 | 0.5175 | |
|
| 0.5042 | 0.8020 | 40 | 0.4926 | |
|
| 0.487 | 1.0025 | 50 | 0.4839 | |
|
| 0.4099 | 1.2030 | 60 | 0.4804 | |
|
| 0.4078 | 1.4035 | 70 | 0.4748 | |
|
| 0.4125 | 1.6040 | 80 | 0.4692 | |
|
| 0.402 | 1.8045 | 90 | 0.4645 | |
|
| 0.398 | 2.0050 | 100 | 0.4635 | |
|
| 0.3066 | 2.2055 | 110 | 0.5003 | |
|
| 0.3049 | 2.4060 | 120 | 0.4879 | |
|
| 0.313 | 2.6065 | 130 | 0.4891 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.42.3 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |