|
--- |
|
base_model: mistralai/Mistral-7B-Instruct-v0.3 |
|
datasets: |
|
- generator |
|
library_name: peft |
|
license: apache-2.0 |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: Mistral-7B-text-to-sql-flash-attention-2-FAISS |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Mistral-7B-text-to-sql-flash-attention-2-FAISS |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the generator dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4583 |
|
|
|
## Model description |
|
|
|
Article: https://medium.com/@frankmorales_91352/faiss-powered-semantic-search-meets-fine-tuned-mistral-a-novel-approach-to-text-to-sql-generation-fc633d9c1bc2 |
|
|
|
|
|
## Training and evaluation data |
|
|
|
Training: https://github.com/frank-morales2020/MLxDL/blob/main/FAISS_FINETUNING.ipynb |
|
|
|
Evaluation: https://github.com/frank-morales2020/MLxDL/blob/main/FAISS_Evaluator_Mistral_7B_text_to_sql.ipynb |
|
|
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 3 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 24 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant |
|
- lr_scheduler_warmup_ratio: 0.03 |
|
- lr_scheduler_warmup_steps: 15 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.8409 | 0.4 | 10 | 0.6999 | |
|
| 0.616 | 0.8 | 20 | 0.5322 | |
|
| 0.4977 | 1.2 | 30 | 0.4910 | |
|
| 0.4486 | 1.6 | 40 | 0.4661 | |
|
| 0.4313 | 2.0 | 50 | 0.4529 | |
|
| 0.36 | 2.4 | 60 | 0.4620 | |
|
| 0.3534 | 2.8 | 70 | 0.4583 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.42.3 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |