|
---
|
|
license: apache-2.0
|
|
base_model: facebook/hubert-base-ls960
|
|
tags:
|
|
- generated_from_trainer
|
|
metrics:
|
|
- accuracy
|
|
- precision
|
|
- recall
|
|
- f1
|
|
model-index:
|
|
- name: hubert-classifier-aug-fold-9
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# hubert-classifier-aug-fold-9
|
|
|
|
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 4.4196
|
|
- Accuracy: 0.0162
|
|
- Precision: 0.0003
|
|
- Recall: 0.0162
|
|
- F1: 0.0005
|
|
- Binary: 0.1388
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 0.0001
|
|
- train_batch_size: 32
|
|
- eval_batch_size: 32
|
|
- seed: 42
|
|
- gradient_accumulation_steps: 4
|
|
- total_train_batch_size: 128
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- num_epochs: 30
|
|
- mixed_precision_training: Native AMP
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Binary |
|
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
|
|
| No log | 0.19 | 50 | 4.4284 | 0.0162 | 0.0003 | 0.0162 | 0.0005 | 0.1321 |
|
|
| No log | 0.38 | 100 | 4.4249 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1296 |
|
|
| No log | 0.58 | 150 | 4.4280 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1353 |
|
|
| No log | 0.77 | 200 | 4.4229 | 0.0108 | 0.0001 | 0.0108 | 0.0002 | 0.1315 |
|
|
| No log | 0.96 | 250 | 4.4254 | 0.0162 | 0.0003 | 0.0162 | 0.0005 | 0.1321 |
|
|
| 4.4398 | 1.15 | 300 | 4.4262 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1334 |
|
|
| 4.4398 | 1.34 | 350 | 4.4237 | 0.0162 | 0.0003 | 0.0162 | 0.0005 | 0.1321 |
|
|
| 4.4398 | 1.53 | 400 | 4.4237 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1315 |
|
|
| 4.4398 | 1.73 | 450 | 4.4233 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1315 |
|
|
| 4.4398 | 1.92 | 500 | 4.4241 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1334 |
|
|
| 4.4196 | 2.11 | 550 | 4.4240 | 0.0162 | 0.0003 | 0.0162 | 0.0005 | 0.1321 |
|
|
| 4.4196 | 2.3 | 600 | 4.4236 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1213 |
|
|
| 4.4196 | 2.49 | 650 | 4.4227 | 0.0162 | 0.0003 | 0.0162 | 0.0005 | 0.1321 |
|
|
| 4.4196 | 2.68 | 700 | 4.4235 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1353 |
|
|
| 4.4196 | 2.88 | 750 | 4.4234 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1334 |
|
|
| 4.4189 | 3.07 | 800 | 4.4234 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1334 |
|
|
| 4.4189 | 3.26 | 850 | 4.4240 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1334 |
|
|
| 4.4189 | 3.45 | 900 | 4.4230 | 0.0162 | 0.0003 | 0.0162 | 0.0005 | 0.1321 |
|
|
| 4.4189 | 3.64 | 950 | 4.4230 | 0.0162 | 0.0003 | 0.0162 | 0.0005 | 0.1321 |
|
|
| 4.4189 | 3.84 | 1000 | 4.4225 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1315 |
|
|
| 4.4185 | 4.03 | 1050 | 4.4233 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1334 |
|
|
| 4.4185 | 4.22 | 1100 | 4.4229 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1334 |
|
|
| 4.4185 | 4.41 | 1150 | 4.4226 | 0.0162 | 0.0003 | 0.0162 | 0.0005 | 0.1321 |
|
|
| 4.4185 | 4.6 | 1200 | 4.4223 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1334 |
|
|
| 4.4185 | 4.79 | 1250 | 4.4234 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1334 |
|
|
| 4.4185 | 4.99 | 1300 | 4.4225 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1302 |
|
|
| 4.4351 | 5.18 | 1350 | 4.4225 | 0.0162 | 0.0003 | 0.0162 | 0.0005 | 0.1321 |
|
|
| 4.4351 | 5.37 | 1400 | 4.4231 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1334 |
|
|
| 4.4351 | 5.56 | 1450 | 4.4233 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1334 |
|
|
| 4.4351 | 5.75 | 1500 | 4.4220 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1334 |
|
|
| 4.4351 | 5.94 | 1550 | 4.4217 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1334 |
|
|
| 4.4178 | 6.14 | 1600 | 4.4225 | 0.0162 | 0.0003 | 0.0162 | 0.0005 | 0.1321 |
|
|
| 4.4178 | 6.33 | 1650 | 4.4217 | 0.0162 | 0.0003 | 0.0162 | 0.0005 | 0.1321 |
|
|
| 4.4178 | 6.52 | 1700 | 4.4222 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1334 |
|
|
| 4.4178 | 6.71 | 1750 | 4.4226 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1334 |
|
|
| 4.4178 | 6.9 | 1800 | 4.4222 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1334 |
|
|
| 4.4175 | 7.09 | 1850 | 4.4232 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1334 |
|
|
| 4.4175 | 7.29 | 1900 | 4.4235 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1334 |
|
|
| 4.4175 | 7.48 | 1950 | 4.4231 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1334 |
|
|
| 4.4175 | 7.67 | 2000 | 4.4235 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1334 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.38.2
|
|
- Pytorch 2.3.0
|
|
- Datasets 2.19.1
|
|
- Tokenizers 0.15.1
|
|
|