fydhfzh's picture
End of training
40612a1 verified
|
raw
history blame
6.26 kB
metadata
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: hubert-classifier-aug
    results: []

hubert-classifier-aug

This model is a fine-tuned version of facebook/hubert-base-ls960 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5817
  • Accuracy: 0.8356
  • Precision: 0.8647
  • Recall: 0.8356
  • F1: 0.8286
  • Binary: 0.8852

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Binary
No log 0.19 50 4.0265 0.0404 0.0071 0.0404 0.0079 0.3011
No log 0.38 100 3.5428 0.0485 0.0048 0.0485 0.0080 0.3286
No log 0.58 150 3.3405 0.0836 0.0175 0.0836 0.0251 0.3555
No log 0.77 200 3.2238 0.0809 0.0143 0.0809 0.0216 0.3512
No log 0.96 250 3.1041 0.0728 0.0135 0.0728 0.0202 0.3493
No log 1.15 300 2.9851 0.1078 0.0517 0.1078 0.0480 0.3730
No log 1.34 350 2.8525 0.1779 0.0780 0.1779 0.0876 0.4197
No log 1.53 400 2.7647 0.1752 0.1108 0.1752 0.1064 0.4221
No log 1.73 450 2.5521 0.2291 0.1539 0.2291 0.1450 0.4547
3.3693 1.92 500 2.4121 0.2372 0.1655 0.2372 0.1618 0.4668
3.3693 2.11 550 2.2312 0.2992 0.2286 0.2992 0.2185 0.5081
3.3693 2.3 600 2.0065 0.4124 0.2985 0.4124 0.3133 0.5865
3.3693 2.49 650 1.8816 0.4313 0.3359 0.4313 0.3461 0.6013
3.3693 2.68 700 1.8069 0.4906 0.4702 0.4906 0.4308 0.6426
3.3693 2.88 750 1.6310 0.5418 0.4981 0.5418 0.4728 0.6803
3.3693 3.07 800 1.5274 0.5580 0.5219 0.5580 0.5002 0.6908
3.3693 3.26 850 1.3417 0.6415 0.6343 0.6415 0.5980 0.7544
3.3693 3.45 900 1.3121 0.6173 0.6059 0.6173 0.5690 0.7334
3.3693 3.64 950 1.2298 0.6523 0.6501 0.6523 0.6183 0.7577
2.2303 3.84 1000 1.1427 0.7197 0.7323 0.7197 0.6897 0.8040
2.2303 4.03 1050 1.0947 0.6765 0.6891 0.6765 0.6387 0.7741
2.2303 4.22 1100 1.1233 0.6361 0.6473 0.6361 0.6054 0.7447
2.2303 4.41 1150 0.9765 0.7547 0.7606 0.7547 0.7331 0.8296
2.2303 4.6 1200 0.9206 0.7547 0.7546 0.7547 0.7270 0.8305
2.2303 4.79 1250 0.8658 0.7790 0.7868 0.7790 0.7625 0.8456
2.2303 4.99 1300 0.8961 0.7385 0.7576 0.7385 0.7254 0.8186
2.2303 5.18 1350 0.7709 0.8005 0.8185 0.8005 0.7912 0.8596
2.2303 5.37 1400 0.7638 0.7925 0.8118 0.7925 0.7760 0.8547
2.2303 5.56 1450 0.7085 0.8194 0.8415 0.8194 0.8081 0.8741
1.6078 5.75 1500 0.7230 0.7790 0.8195 0.7790 0.7739 0.8456
1.6078 5.94 1550 0.6475 0.7951 0.8174 0.7951 0.7813 0.8558
1.6078 6.14 1600 0.6910 0.7844 0.8082 0.7844 0.7686 0.8504
1.6078 6.33 1650 0.6233 0.8194 0.8462 0.8194 0.8111 0.8730
1.6078 6.52 1700 0.6599 0.8059 0.8429 0.8059 0.8031 0.8633
1.6078 6.71 1750 0.6999 0.7925 0.8119 0.7925 0.7751 0.8550
1.6078 6.9 1800 0.6271 0.8140 0.8266 0.8140 0.8018 0.8701
1.6078 7.09 1850 0.5545 0.8329 0.8557 0.8329 0.8288 0.8822
1.6078 7.29 1900 0.6343 0.8032 0.8179 0.8032 0.7930 0.8625
1.6078 7.48 1950 0.6007 0.8194 0.8447 0.8194 0.8136 0.8728
1.2974 7.67 2000 0.5878 0.8356 0.8674 0.8356 0.8333 0.8841
1.2974 7.86 2050 0.6410 0.8086 0.8344 0.8086 0.8011 0.8652
1.2974 8.05 2100 0.6430 0.8005 0.8201 0.8005 0.7894 0.8598
1.2974 8.25 2150 0.5540 0.8221 0.8414 0.8221 0.8177 0.8747
1.2974 8.44 2200 0.5511 0.8356 0.8635 0.8356 0.8317 0.8833
1.2974 8.63 2250 0.5817 0.8356 0.8647 0.8356 0.8286 0.8852

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1