|
---
|
|
license: apache-2.0
|
|
base_model: facebook/hubert-base-ls960
|
|
tags:
|
|
- generated_from_trainer
|
|
metrics:
|
|
- accuracy
|
|
- precision
|
|
- recall
|
|
- f1
|
|
model-index:
|
|
- name: hubert-classifier-aug
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# hubert-classifier-aug
|
|
|
|
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 4.4217
|
|
- Accuracy: 0.0135
|
|
- Precision: 0.0002
|
|
- Recall: 0.0135
|
|
- F1: 0.0004
|
|
- Binary: 0.1334
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 0.0001
|
|
- train_batch_size: 32
|
|
- eval_batch_size: 32
|
|
- seed: 42
|
|
- gradient_accumulation_steps: 4
|
|
- total_train_batch_size: 128
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- lr_scheduler_warmup_steps: 500
|
|
- num_epochs: 100
|
|
- mixed_precision_training: Native AMP
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Binary |
|
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
|
|
| No log | 0.19 | 50 | 4.4268 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1315 |
|
|
| No log | 0.38 | 100 | 4.4280 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1261 |
|
|
| No log | 0.58 | 150 | 4.4240 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1334 |
|
|
| No log | 0.77 | 200 | 4.4235 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1353 |
|
|
| No log | 0.96 | 250 | 4.4229 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1353 |
|
|
| No log | 1.15 | 300 | 4.4210 | 0.0162 | 0.0003 | 0.0162 | 0.0005 | 0.1280 |
|
|
| No log | 1.34 | 350 | 4.4216 | 0.0162 | 0.0003 | 0.0162 | 0.0005 | 0.1280 |
|
|
| No log | 1.53 | 400 | 4.4225 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1334 |
|
|
| No log | 1.73 | 450 | 4.4229 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1353 |
|
|
| 4.4254 | 1.92 | 500 | 4.4217 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1334 |
|
|
| 4.4254 | 2.11 | 550 | 4.4214 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1334 |
|
|
| 4.4254 | 2.3 | 600 | 4.4213 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1315 |
|
|
| 4.4254 | 2.49 | 650 | 4.4213 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1261 |
|
|
| 4.4254 | 2.68 | 700 | 4.4228 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1334 |
|
|
| 4.4254 | 2.88 | 750 | 4.4209 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1334 |
|
|
| 4.4254 | 3.07 | 800 | 4.4210 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1261 |
|
|
| 4.4254 | 3.26 | 850 | 4.4216 | 0.0135 | 0.0002 | 0.0135 | 0.0004 | 0.1315 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.38.2
|
|
- Pytorch 2.3.0
|
|
- Datasets 2.19.1
|
|
- Tokenizers 0.15.1
|
|
|