hubert-classifier / README.md
fydhfzh's picture
End of training
7ce2631 verified
|
raw
history blame
2.78 kB
metadata
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: hubert-classifier
    results: []

hubert-classifier

This model is a fine-tuned version of facebook/hubert-base-ls960 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.4231
  • Accuracy: 0.0993
  • Precision: 0.0191
  • Recall: 0.0993
  • F1: 0.0296
  • Binary: 0.3603

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Binary
No log 0.86 50 4.4031 0.0218 0.0042 0.0218 0.0061 0.1886
No log 1.72 100 4.1752 0.0363 0.0204 0.0363 0.0100 0.3102
No log 2.59 150 3.9334 0.0363 0.0159 0.0363 0.0125 0.3102
No log 3.45 200 3.7751 0.0557 0.0270 0.0557 0.0268 0.3266
No log 4.31 250 3.6877 0.0775 0.0241 0.0775 0.0314 0.3383
No log 5.17 300 3.5839 0.0920 0.0220 0.0920 0.0329 0.3550
No log 6.03 350 3.5119 0.0920 0.0219 0.0920 0.0327 0.3586
No log 6.9 400 3.4851 0.0872 0.0274 0.0872 0.0283 0.3508
No log 7.76 450 3.4593 0.0920 0.0221 0.0920 0.0312 0.3552
3.8751 8.62 500 3.4240 0.1017 0.0223 0.1017 0.0328 0.3610
3.8751 9.48 550 3.4231 0.0993 0.0191 0.0993 0.0296 0.3603

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1