Edit model card

wavlm-base

This model is a fine-tuned version of microsoft/wavlm-base on the galsenai/waxal_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1345
  • Accuracy: 0.6783
  • Precision: 0.8774
  • F1: 0.7615

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 30
  • eval_batch_size: 30
  • seed: 0
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 120
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 32.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision F1
4.4506 2.53 500 4.8601 0.0224 0.0136 0.0066
3.0523 5.05 1000 4.6674 0.0720 0.0460 0.0394
1.949 7.58 1500 4.1533 0.1156 0.1847 0.1064
1.3427 10.1 2000 3.8173 0.1448 0.2382 0.1347
1.0064 12.63 2500 3.5546 0.2183 0.4464 0.2385
0.7985 15.15 3000 3.1172 0.3842 0.6336 0.4258
0.6505 17.68 3500 2.9231 0.5165 0.7677 0.5995
0.5367 20.2 4000 2.4935 0.5961 0.8182 0.6755
0.465 22.73 4500 2.2411 0.6412 0.8624 0.7272
0.4075 25.25 5000 2.1345 0.6783 0.8774 0.7615
0.3793 27.78 5500 2.2535 0.6681 0.8792 0.7543
0.3418 30.3 6000 2.3390 0.6662 0.8905 0.7576

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.11.0+cu113
  • Datasets 2.9.1.dev0
  • Tokenizers 0.13.2
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.