abdouaziiz commited on
Commit
ffc6710
1 Parent(s): 7c2ec3a

Upload 6 files

Browse files
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - audio-classification
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - precision
8
+ - f1
9
+ model-index:
10
+ - name: wavlm-base
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # wavlm-base
18
+
19
+ This model is a fine-tuned version of [microsoft/wavlm-base](https://huggingface.co/microsoft/wavlm-base) on the galsenai/waxal_dataset dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 2.1345
22
+ - Accuracy: 0.6783
23
+ - Precision: 0.8774
24
+ - F1: 0.7615
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 3e-05
44
+ - train_batch_size: 30
45
+ - eval_batch_size: 30
46
+ - seed: 0
47
+ - gradient_accumulation_steps: 4
48
+ - total_train_batch_size: 120
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - lr_scheduler_warmup_ratio: 0.1
52
+ - num_epochs: 32.0
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | F1 |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|
58
+ | 4.4506 | 2.53 | 500 | 4.8601 | 0.0224 | 0.0136 | 0.0066 |
59
+ | 3.0523 | 5.05 | 1000 | 4.6674 | 0.0720 | 0.0460 | 0.0394 |
60
+ | 1.949 | 7.58 | 1500 | 4.1533 | 0.1156 | 0.1847 | 0.1064 |
61
+ | 1.3427 | 10.1 | 2000 | 3.8173 | 0.1448 | 0.2382 | 0.1347 |
62
+ | 1.0064 | 12.63 | 2500 | 3.5546 | 0.2183 | 0.4464 | 0.2385 |
63
+ | 0.7985 | 15.15 | 3000 | 3.1172 | 0.3842 | 0.6336 | 0.4258 |
64
+ | 0.6505 | 17.68 | 3500 | 2.9231 | 0.5165 | 0.7677 | 0.5995 |
65
+ | 0.5367 | 20.2 | 4000 | 2.4935 | 0.5961 | 0.8182 | 0.6755 |
66
+ | 0.465 | 22.73 | 4500 | 2.2411 | 0.6412 | 0.8624 | 0.7272 |
67
+ | 0.4075 | 25.25 | 5000 | 2.1345 | 0.6783 | 0.8774 | 0.7615 |
68
+ | 0.3793 | 27.78 | 5500 | 2.2535 | 0.6681 | 0.8792 | 0.7543 |
69
+ | 0.3418 | 30.3 | 6000 | 2.3390 | 0.6662 | 0.8905 | 0.7576 |
70
+
71
+
72
+ ### Framework versions
73
+
74
+ - Transformers 4.27.0.dev0
75
+ - Pytorch 1.11.0+cu113
76
+ - Datasets 2.9.1.dev0
77
+ - Tokenizers 0.13.2
all_results.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 32.0,
3
+ "eval_accuracy": 0.6782872300113679,
4
+ "eval_f1": 0.76152721933526,
5
+ "eval_loss": 2.134546995162964,
6
+ "eval_precision": 0.8773557553113618,
7
+ "eval_runtime": 70.2134,
8
+ "eval_samples_per_second": 37.585,
9
+ "eval_steps_per_second": 1.253,
10
+ "train_loss": 1.2320244793940072,
11
+ "train_runtime": 19932.9865,
12
+ "train_samples_per_second": 38.125,
13
+ "train_steps_per_second": 0.318
14
+ }
eval_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 32.0,
3
+ "eval_accuracy": 0.6782872300113679,
4
+ "eval_f1": 0.76152721933526,
5
+ "eval_loss": 2.134546995162964,
6
+ "eval_precision": 0.8773557553113618,
7
+ "eval_runtime": 70.2134,
8
+ "eval_samples_per_second": 37.585,
9
+ "eval_steps_per_second": 1.253
10
+ }
train_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 32.0,
3
+ "train_loss": 1.2320244793940072,
4
+ "train_runtime": 19932.9865,
5
+ "train_samples_per_second": 38.125,
6
+ "train_steps_per_second": 0.318
7
+ }
trainer_state.json ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.6782872300113679,
3
+ "best_model_checkpoint": "wavlm-base/checkpoint-5000",
4
+ "epoch": 32.0,
5
+ "global_step": 6336,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 2.53,
12
+ "learning_rate": 2.3659305993690853e-05,
13
+ "loss": 4.4506,
14
+ "step": 500
15
+ },
16
+ {
17
+ "epoch": 2.53,
18
+ "eval_accuracy": 0.02235695339143615,
19
+ "eval_f1": 0.006616186351103852,
20
+ "eval_loss": 4.86008358001709,
21
+ "eval_precision": 0.013553337387865622,
22
+ "eval_runtime": 71.9324,
23
+ "eval_samples_per_second": 36.687,
24
+ "eval_steps_per_second": 1.223,
25
+ "step": 500
26
+ },
27
+ {
28
+ "epoch": 5.05,
29
+ "learning_rate": 2.8074359873728517e-05,
30
+ "loss": 3.0523,
31
+ "step": 1000
32
+ },
33
+ {
34
+ "epoch": 5.05,
35
+ "eval_accuracy": 0.07199696854869268,
36
+ "eval_f1": 0.03943960465213343,
37
+ "eval_loss": 4.667360305786133,
38
+ "eval_precision": 0.0460329111931258,
39
+ "eval_runtime": 71.0687,
40
+ "eval_samples_per_second": 37.133,
41
+ "eval_steps_per_second": 1.238,
42
+ "step": 1000
43
+ },
44
+ {
45
+ "epoch": 7.58,
46
+ "learning_rate": 2.5443703963521573e-05,
47
+ "loss": 1.949,
48
+ "step": 1500
49
+ },
50
+ {
51
+ "epoch": 7.58,
52
+ "eval_accuracy": 0.11557408109132247,
53
+ "eval_f1": 0.10642928153043356,
54
+ "eval_loss": 4.153301239013672,
55
+ "eval_precision": 0.18473852089235457,
56
+ "eval_runtime": 71.0445,
57
+ "eval_samples_per_second": 37.146,
58
+ "eval_steps_per_second": 1.239,
59
+ "step": 1500
60
+ },
61
+ {
62
+ "epoch": 10.1,
63
+ "learning_rate": 2.2813048053314627e-05,
64
+ "loss": 1.3427,
65
+ "step": 2000
66
+ },
67
+ {
68
+ "epoch": 10.1,
69
+ "eval_accuracy": 0.14475179992421372,
70
+ "eval_f1": 0.1346763066246049,
71
+ "eval_loss": 3.8172836303710938,
72
+ "eval_precision": 0.23822785193835883,
73
+ "eval_runtime": 74.8027,
74
+ "eval_samples_per_second": 35.279,
75
+ "eval_steps_per_second": 1.176,
76
+ "step": 2000
77
+ },
78
+ {
79
+ "epoch": 12.63,
80
+ "learning_rate": 2.0182392143107683e-05,
81
+ "loss": 1.0064,
82
+ "step": 2500
83
+ },
84
+ {
85
+ "epoch": 12.63,
86
+ "eval_accuracy": 0.2182644941265631,
87
+ "eval_f1": 0.23851786199348127,
88
+ "eval_loss": 3.5546185970306396,
89
+ "eval_precision": 0.44639974594463316,
90
+ "eval_runtime": 71.1082,
91
+ "eval_samples_per_second": 37.112,
92
+ "eval_steps_per_second": 1.238,
93
+ "step": 2500
94
+ },
95
+ {
96
+ "epoch": 15.15,
97
+ "learning_rate": 1.7551736232900737e-05,
98
+ "loss": 0.7985,
99
+ "step": 3000
100
+ },
101
+ {
102
+ "epoch": 15.15,
103
+ "eval_accuracy": 0.3842364532019704,
104
+ "eval_f1": 0.4258289880546809,
105
+ "eval_loss": 3.117234230041504,
106
+ "eval_precision": 0.6336488091054493,
107
+ "eval_runtime": 70.3629,
108
+ "eval_samples_per_second": 37.506,
109
+ "eval_steps_per_second": 1.251,
110
+ "step": 3000
111
+ },
112
+ {
113
+ "epoch": 17.68,
114
+ "learning_rate": 1.4921080322693792e-05,
115
+ "loss": 0.6505,
116
+ "step": 3500
117
+ },
118
+ {
119
+ "epoch": 17.68,
120
+ "eval_accuracy": 0.5164835164835165,
121
+ "eval_f1": 0.5994643376487049,
122
+ "eval_loss": 2.9230926036834717,
123
+ "eval_precision": 0.7677367523432096,
124
+ "eval_runtime": 70.3236,
125
+ "eval_samples_per_second": 37.527,
126
+ "eval_steps_per_second": 1.251,
127
+ "step": 3500
128
+ },
129
+ {
130
+ "epoch": 20.2,
131
+ "learning_rate": 1.2290424412486847e-05,
132
+ "loss": 0.5367,
133
+ "step": 4000
134
+ },
135
+ {
136
+ "epoch": 20.2,
137
+ "eval_accuracy": 0.5960591133004927,
138
+ "eval_f1": 0.6755266051820856,
139
+ "eval_loss": 2.4934628009796143,
140
+ "eval_precision": 0.818165400699518,
141
+ "eval_runtime": 69.6955,
142
+ "eval_samples_per_second": 37.865,
143
+ "eval_steps_per_second": 1.263,
144
+ "step": 4000
145
+ },
146
+ {
147
+ "epoch": 22.73,
148
+ "learning_rate": 9.659768502279902e-06,
149
+ "loss": 0.465,
150
+ "step": 4500
151
+ },
152
+ {
153
+ "epoch": 22.73,
154
+ "eval_accuracy": 0.6411519514967791,
155
+ "eval_f1": 0.7272288000165434,
156
+ "eval_loss": 2.241117238998413,
157
+ "eval_precision": 0.86241474957474,
158
+ "eval_runtime": 70.29,
159
+ "eval_samples_per_second": 37.544,
160
+ "eval_steps_per_second": 1.252,
161
+ "step": 4500
162
+ },
163
+ {
164
+ "epoch": 25.25,
165
+ "learning_rate": 7.029112592072957e-06,
166
+ "loss": 0.4075,
167
+ "step": 5000
168
+ },
169
+ {
170
+ "epoch": 25.25,
171
+ "eval_accuracy": 0.6782872300113679,
172
+ "eval_f1": 0.76152721933526,
173
+ "eval_loss": 2.134546995162964,
174
+ "eval_precision": 0.8773557553113618,
175
+ "eval_runtime": 70.2432,
176
+ "eval_samples_per_second": 37.569,
177
+ "eval_steps_per_second": 1.253,
178
+ "step": 5000
179
+ },
180
+ {
181
+ "epoch": 27.78,
182
+ "learning_rate": 4.398456681866012e-06,
183
+ "loss": 0.3793,
184
+ "step": 5500
185
+ },
186
+ {
187
+ "epoch": 27.78,
188
+ "eval_accuracy": 0.6680560818491853,
189
+ "eval_f1": 0.7542953137768733,
190
+ "eval_loss": 2.2534902095794678,
191
+ "eval_precision": 0.8791790950841867,
192
+ "eval_runtime": 70.1811,
193
+ "eval_samples_per_second": 37.603,
194
+ "eval_steps_per_second": 1.254,
195
+ "step": 5500
196
+ },
197
+ {
198
+ "epoch": 30.3,
199
+ "learning_rate": 1.767800771659067e-06,
200
+ "loss": 0.3418,
201
+ "step": 6000
202
+ },
203
+ {
204
+ "epoch": 30.3,
205
+ "eval_accuracy": 0.6661614247821145,
206
+ "eval_f1": 0.7575999245015367,
207
+ "eval_loss": 2.3390462398529053,
208
+ "eval_precision": 0.8904662594400684,
209
+ "eval_runtime": 70.3334,
210
+ "eval_samples_per_second": 37.521,
211
+ "eval_steps_per_second": 1.251,
212
+ "step": 6000
213
+ },
214
+ {
215
+ "epoch": 32.0,
216
+ "step": 6336,
217
+ "total_flos": 3.804690514724178e+19,
218
+ "train_loss": 1.2320244793940072,
219
+ "train_runtime": 19932.9865,
220
+ "train_samples_per_second": 38.125,
221
+ "train_steps_per_second": 0.318
222
+ }
223
+ ],
224
+ "max_steps": 6336,
225
+ "num_train_epochs": 32,
226
+ "total_flos": 3.804690514724178e+19,
227
+ "trial_name": null,
228
+ "trial_params": null
229
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d78303a058fc6cb98946f3d25ed93eee9a4848daff7fe0a1f307e959024839c
3
+ size 3503