BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("gauravsirola/bge-base-financial-matryoshka-v1")
# Run inference
sentences = [
    'State legislation increasingly requires PBMs to conduct audits of network pharmacies regarding claims submitted for payment. Non-compliance could prevent the recoupment of overpaid amounts, potentially causing financial and legal repercussions.',
    'What are the potential consequences for a company if its PBMs fail to comply with pharmacy audit regulations?',
    'What pages do the Consolidated Financial Statements and their accompanying Notes and reports appear on in the document?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6786
cosine_accuracy@3 0.8343
cosine_accuracy@5 0.88
cosine_accuracy@10 0.9086
cosine_precision@1 0.6786
cosine_precision@3 0.2781
cosine_precision@5 0.176
cosine_precision@10 0.0909
cosine_recall@1 0.6786
cosine_recall@3 0.8343
cosine_recall@5 0.88
cosine_recall@10 0.9086
cosine_ndcg@10 0.7995
cosine_mrr@10 0.7638
cosine_map@100 0.7674

Information Retrieval

Metric Value
cosine_accuracy@1 0.6686
cosine_accuracy@3 0.8271
cosine_accuracy@5 0.8686
cosine_accuracy@10 0.9129
cosine_precision@1 0.6686
cosine_precision@3 0.2757
cosine_precision@5 0.1737
cosine_precision@10 0.0913
cosine_recall@1 0.6686
cosine_recall@3 0.8271
cosine_recall@5 0.8686
cosine_recall@10 0.9129
cosine_ndcg@10 0.7955
cosine_mrr@10 0.7574
cosine_map@100 0.7607

Information Retrieval

Metric Value
cosine_accuracy@1 0.6729
cosine_accuracy@3 0.8143
cosine_accuracy@5 0.8643
cosine_accuracy@10 0.9043
cosine_precision@1 0.6729
cosine_precision@3 0.2714
cosine_precision@5 0.1729
cosine_precision@10 0.0904
cosine_recall@1 0.6729
cosine_recall@3 0.8143
cosine_recall@5 0.8643
cosine_recall@10 0.9043
cosine_ndcg@10 0.7916
cosine_mrr@10 0.7553
cosine_map@100 0.7591

Information Retrieval

Metric Value
cosine_accuracy@1 0.6529
cosine_accuracy@3 0.8114
cosine_accuracy@5 0.85
cosine_accuracy@10 0.8886
cosine_precision@1 0.6529
cosine_precision@3 0.2705
cosine_precision@5 0.17
cosine_precision@10 0.0889
cosine_recall@1 0.6529
cosine_recall@3 0.8114
cosine_recall@5 0.85
cosine_recall@10 0.8886
cosine_ndcg@10 0.7754
cosine_mrr@10 0.7386
cosine_map@100 0.7431

Information Retrieval

Metric Value
cosine_accuracy@1 0.6157
cosine_accuracy@3 0.7614
cosine_accuracy@5 0.81
cosine_accuracy@10 0.8643
cosine_precision@1 0.6157
cosine_precision@3 0.2538
cosine_precision@5 0.162
cosine_precision@10 0.0864
cosine_recall@1 0.6157
cosine_recall@3 0.7614
cosine_recall@5 0.81
cosine_recall@10 0.8643
cosine_ndcg@10 0.7414
cosine_mrr@10 0.702
cosine_map@100 0.7071

Training Details

Training Dataset

Unnamed Dataset

  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 7 tokens
    • mean: 44.73 tokens
    • max: 301 tokens
    • min: 8 tokens
    • mean: 20.57 tokens
    • max: 41 tokens
  • Samples:
    positive anchor
    Net loss was $396.6 million and $973.6 million during the years ended December 31, 2023, and December 31, 2022, respectively. What was the net loss for the year ended December 31, 2022?
    Under the 2023 IDA agreement, the service fee on client cash deposits held at the TD Depository Institutions remains at 15 basis points, as it was in the 2019 IDA agreement. How much is the service fee on client cash deposits held at the TD Depository Institutions under the 2023 IDA agreement?
    The total shareholders’ deficit is listed as $7,994.8 million in the latest financial statement. What is the total shareholder's deficit according to the latest financial statement?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.8122 10 1.5585 - - - - -
0.9746 12 - 0.7207 0.7441 0.7510 0.6857 0.7493
1.6244 20 0.6691 - - - - -
1.9492 24 - 0.7392 0.7564 0.7601 0.7006 0.7661
2.4365 30 0.4702 - - - - -
2.9239 36 - 0.7430 0.7600 0.7619 0.7065 0.7685
3.2487 40 0.407 - - - - -
3.8985 48 - 0.7431 0.7591 0.7607 0.7071 0.7674
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.6
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.31.0
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
12
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gauravsirola/bge-base-financial-matryoshka-v1

Finetuned
(294)
this model

Evaluation results