Edit model card

Visualize in Weights & Biases

cls-meta-test

This model is a fine-tuned version of vinai/phobert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7757
  • Accuracy: 0.8259
  • F1: 0.8036

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.9834 1.8182 200 0.5062 0.8314 0.6869
0.4462 3.6364 400 0.9367 0.6784 0.7354
0.3124 5.4545 600 0.9898 0.5084 0.6351
0.2517 7.2727 800 0.5842 0.8350 0.8134
0.1859 9.0909 1000 0.5760 0.8339 0.8138
0.1493 10.9091 1200 0.6501 0.8299 0.8145
0.1301 12.7273 1400 0.6403 0.8310 0.8219
0.1126 14.5455 1600 0.7262 0.8296 0.8110
0.0946 16.3636 1800 0.7555 0.8237 0.8048
0.0861 18.1818 2000 0.7576 0.8270 0.8085
0.0756 20.0 2200 0.7757 0.8259 0.8036

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gechim/cls-metadaweb-dataGemini

Finetuned
(184)
this model