SetFit Aspect Model with sentence-transformers/all-MiniLM-L6-v2
This is a SetFit model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses sentence-transformers/all-MiniLM-L6-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
This model was trained within the context of a larger system for ABSA, which looks like so:
- Use a spaCy model to select possible aspect span candidates.
- Use this SetFit model to filter these possible aspect span candidates.
- Use a SetFit model to classify the filtered aspect span candidates.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-MiniLM-L6-v2
- Classification head: a LogisticRegression instance
- spaCy Model: en_core_web_sm
- SetFitABSA Aspect Model: ginkgogo/setfit-absa-bge-small-en-v1.5-restaurants-aspect
- SetFitABSA Polarity Model: ginkgogo/setfit-absa-bge-small-en-v1.5-restaurants-polarity
- Maximum Sequence Length: 256 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
aspect |
|
no aspect |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9570 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import AbsaModel
# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
"ginkgogo/setfit-absa-bge-small-en-v1.5-restaurants-aspect",
"ginkgogo/setfit-absa-bge-small-en-v1.5-restaurants-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 21 | 152.7030 | 268 |
Label | Training Sample Count |
---|---|
no aspect | 383 |
aspect | 21 |
Training Hyperparameters
- batch_size: (50, 50)
- num_epochs: (5, 5)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: True
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0003 | 1 | 0.2856 | - |
0.0169 | 50 | 0.2755 | 0.3092 |
0.0339 | 100 | 0.2895 | 0.2962 |
0.0508 | 150 | 0.2845 | 0.2876 |
0.0678 | 200 | 0.2471 | 0.2826 |
0.0847 | 250 | 0.2124 | 0.2691 |
0.1017 | 300 | 0.1357 | 0.184 |
0.1186 | 350 | 0.0362 | 0.0871 |
0.1355 | 400 | 0.07 | 0.0848 |
0.1525 | 450 | 0.0184 | 0.092 |
0.1694 | 500 | 0.0179 | 0.096 |
0.1864 | 550 | 0.0033 | 0.097 |
0.2033 | 600 | 0.0037 | 0.0978 |
0.2203 | 650 | 0.04 | 0.1046 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.6.0
- spaCy: 3.7.4
- Transformers: 4.38.2
- PyTorch: 2.2.1+cu121
- Datasets: 2.18.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 4
Inference API (serverless) has been turned off for this model.
Model tree for ginkgogo/setfit-absa-bge-small-en-v1.5-restaurants-aspect
Base model
sentence-transformers/all-MiniLM-L6-v2