gnumanth's picture
chore: shorter import
2dfaf8c verified
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- gemma
- trl
base_model: unsloth/gemma-7b-bnb-4bit
---
# gemma-alpacha
> yahma/alpaca-cleaned finetuned with gemma-7b-bnb-4bit
# Usage
```sh
pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
```
```py
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained("gnumanth/gemma-unsloth-alpaca")
```
```py
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
```
```py
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
inputs = tokenizer(
[
alpaca_prompt.format(
"Give me a python code for quicksort", # instruction
"1,-1,0,8,9,-2,2", # input
"", # output - leave this blank for generation!
)
], return_tensors = "pt").to("cuda")
from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)
```
```sh
<bos>Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
Give me a python code for quicksort
### Input:
1,-1,0,8,9,-2,2
### Response:
def quicksort(arr):
if len(arr) <= 1:
return arr
pivot = arr[0]
left = [i for i in arr[1:] if i < pivot]
right = [i for i in arr[1:] if i >= pivot]
return quicksort(left) + [pivot] + quicksort(right)<eos>
```
[Hemanth HMM](https://h3amnth.com) | (Built with [unsloth](https://unsloth.ai))