Edit model card

bert_uncased_L-6_H-128_A-2_massive

This model is a fine-tuned version of google/bert_uncased_L-6_H-128_A-2 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5439
  • Accuracy: 0.7314

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.8348 1.0 180 3.5466 0.3192
3.3738 2.0 360 3.1057 0.4407
2.9882 3.0 540 2.7502 0.5140
2.6778 4.0 720 2.4684 0.5789
2.4276 5.0 900 2.2516 0.6158
2.2242 6.0 1080 2.0764 0.6419
2.0619 7.0 1260 1.9388 0.6827
1.932 8.0 1440 1.8294 0.6827
1.8283 9.0 1620 1.7395 0.6975
1.7411 10.0 1800 1.6747 0.7118
1.6698 11.0 1980 1.6142 0.7137
1.6176 12.0 2160 1.5737 0.7231
1.5796 13.0 2340 1.5439 0.7314
1.5509 14.0 2520 1.5284 0.7300
1.5409 15.0 2700 1.5226 0.7285

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gokuls/bert_uncased_L-6_H-128_A-2_massive

Finetuned
(2)
this model

Evaluation results