gokuls's picture
End of training
4988f03 verified
metadata
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: hubert-base-ls960-finetuned-ic-slurp
    results: []

hubert-base-ls960-finetuned-ic-slurp

This model is a fine-tuned version of facebook/hubert-base-ls960 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9150
  • Accuracy: 0.7349

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 96
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
4.0503 1.0 527 3.9739 0.0814
3.8351 2.0 1055 3.7950 0.0837
3.7053 3.0 1582 3.6592 0.1081
3.4539 4.0 2110 3.3374 0.1772
2.657 5.0 2637 2.5832 0.3443
2.1356 6.0 3165 2.0006 0.4873
1.7409 7.0 3692 1.7459 0.5627
1.4391 8.0 4220 1.6168 0.6104
1.1336 9.0 4747 1.5041 0.6489
1.0151 10.0 5275 1.4378 0.6786
0.8624 11.0 5802 1.4653 0.6880
0.6583 12.0 6330 1.4319 0.6998
0.7089 13.0 6857 1.4993 0.7095
0.6454 14.0 7385 1.5267 0.7036
0.5424 15.0 7912 1.5672 0.7152
0.425 16.0 8440 1.6051 0.7159
0.4016 17.0 8967 1.6342 0.7173
0.3563 18.0 9495 1.7061 0.7110
0.367 19.0 10022 1.6884 0.7177
0.3511 20.0 10550 1.7300 0.7154
0.3573 21.0 11077 1.7361 0.7230
0.2533 22.0 11605 1.7119 0.7279
0.2029 23.0 12132 1.7801 0.7279
0.3279 24.0 12660 1.8096 0.7324
0.2164 25.0 13187 1.8916 0.7237
0.2092 26.0 13715 1.8348 0.7274
0.1757 27.0 14242 1.8824 0.7286
0.2584 28.0 14770 1.9150 0.7349
0.1605 29.0 15297 1.9417 0.7305
0.1815 30.0 15825 1.8939 0.7309
0.1749 31.0 16352 1.9729 0.7327
0.1628 32.0 16880 1.9796 0.7275
0.1369 33.0 17407 2.0156 0.7322

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2