spivavtor-large / README.md
amansaini's picture
Update README.md
93d03f0 verified
|
raw
history blame
1.51 kB
metadata
license: cc-by-nc-4.0

Model Card for Spivavtor-Large

This model was obtained by fine-tuning the corresponding bigscience/mt0-large model on the Spivavtor dataset. All details of the dataset and fine tuning process can be found in our paper and repository.

Paper: Spivavtor: An Instruction Tuned Ukrainian Text Editing Model

Authors: Aman Saini, Artem Chernodub, Vipul Raheja, Vivek Kulkarni

Model Details

Model Description

  • Language: Ukrainian
  • Finetuned from model: bigscience/mt0-large

How to use

We make available the following models presented in our paper.

Model Number of parameters Reference name in Paper
Spivavtor-large 1.2B Spivavtor-mt0-large
Spivavtor-xxl 11B Spivavtor-aya-101

Usage

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("grammarly/spivavtor-large")
model = AutoModelForSeq2SeqLM.from_pretrained("grammarly/spivavtor-large")

input_text = 'Виправте граматику в цьому реченнi: Дякую за iнформацiю! ми з Надiєю саме вийшли з дому'

input_ids = tokenizer(input_text, return_tensors="pt").input_ids
outputs = model.generate(input_ids, max_length=256)
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)