greenw0lf's picture
Update README.md
c91a92e
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_13_0
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xls-r-1b-frisian
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_13_0
          type: common_voice_13_0
          config: fy-NL
          split: validation
          args: fy-NL
        metrics:
          - name: Wer
            type: wer
            value: 0.1492598825428444
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_8_0
          type: common_voice_8_0
          config: fy-NL
          split: test
          args: fy-NL
        metrics:
          - name: Wer
            type: wer
            value: 0.15356265356265356
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_13_0
          type: common_voice_13_0
          config: fy-NL
          split: test
          args: fy-NL
        metrics:
          - name: Wer
            type: wer
            value: 0.14712316399874995

wav2vec2-large-xls-r-1b-frisian

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2204
  • Wer: 0.1493

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.9606 2.45 300 2.6184 1.0
1.4992 4.9 600 0.4233 0.4143
0.9757 7.35 900 0.2765 0.3021
0.8773 9.8 1200 0.2529 0.2528
0.7448 12.24 1500 0.2363 0.2258
0.7039 14.69 1800 0.2258 0.2103
0.6811 17.14 2100 0.2217 0.2074
0.6279 19.59 2400 0.2050 0.1915
0.5938 22.04 2700 0.2229 0.1922
0.6227 24.49 3000 0.2088 0.2019
0.5682 26.94 3300 0.2127 0.1874
0.5939 29.39 3600 0.2044 0.1789
0.5427 31.84 3900 0.2185 0.1791
0.5551 34.41 4200 0.2097 0.1644
0.5021 36.86 4500 0.2180 0.1678
0.4589 39.31 4800 0.2076 0.1581
0.5204 41.76 5100 0.2181 0.1587
0.512 44.21 5400 0.2263 0.1607
0.465 46.66 5700 0.2204 0.1493

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu117
  • Datasets 2.11.0
  • Tokenizers 0.13.3