metadata
license: other
base_model: FLUX.1-dev
tags:
- flux
- flux-diffusers
- text-to-image
- diffusers
- simpletuner
- not-for-all-audiences
- lora
- template:sd-lora
- lycoris
inference: true
widget:
- text: unconditional (blank prompt)
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_0_0.png
- text: ovrtn toner, blue, plaster background
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_1_0.png
- text: >-
ovrtn toner, white background, green, laying down on an angle, lying down
on an angle
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_2_0.png
- text: ovrtn toner, white background, purple
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_3_0.png
- text: >-
ovrtn toner, white background, green, laying down on an angle, lying down
on an angle
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_4_0.png
- text: a photo of a daisy
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_5_0.png
growwithdaisy/crrllcrrllxovrtn_subjects_flat_20241123_110734
This is a LyCORIS adapter derived from FLUX.1-dev.
The main validation prompt used during training was:
a photo of a daisy
Validation settings
- CFG:
3.5
- CFG Rescale:
0.0
- Steps:
20
- Sampler:
FlowMatchEulerDiscreteScheduler
- Seed:
69
- Resolution:
1024x1024
- Skip-layer guidance:
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
- Training epochs: 103
- Training steps: 15000
- Learning rate: 0.0001
- Learning rate schedule: constant
- Warmup steps: 0
- Max grad norm: 2.0
- Effective batch size: 16
- Micro-batch size: 2
- Gradient accumulation steps: 1
- Number of GPUs: 8
- Gradient checkpointing: True
- Prediction type: flow-matching (extra parameters=['shift=3', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flow_matching_loss=compatible'])
- Optimizer: optimi-stableadamwweight_decay=1e-3
- Trainable parameter precision: Pure BF16
- Caption dropout probability: 5.0%
LyCORIS Config:
{
"algo": "lokr",
"multiplier": 1,
"linear_dim": 1000000,
"linear_alpha": 1,
"factor": 12,
"init_lokr_norm": 0.001,
"apply_preset": {
"target_module": [
"FluxTransformerBlock",
"FluxSingleTransformerBlock"
],
"module_algo_map": {
"Attention": {
"factor": 12
},
"FeedForward": {
"factor": 6
}
}
}
}
Datasets
crrllcrrllxovrtn_subjects_flat-512
- Repeats: 0
- Total number of images: ~272
- Total number of aspect buckets: 11
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
crrllcrrllxovrtn_subjects_flat-768
- Repeats: 1
- Total number of images: ~232
- Total number of aspect buckets: 14
- Resolution: 0.589824 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
crrllcrrllxovrtn_subjects_flat-1024
- Repeats: 2
- Total number of images: ~168
- Total number of aspect buckets: 12
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
Inference
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights
def download_adapter(repo_id: str):
import os
from huggingface_hub import hf_hub_download
adapter_filename = "pytorch_lora_weights.safetensors"
cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
os.makedirs(path_to_adapter, exist_ok=True)
hf_hub_download(
repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
)
return path_to_adapter_file
model_id = 'FLUX.1-dev'
adapter_repo_id = 'playerzer0x/growwithdaisy/crrllcrrllxovrtn_subjects_flat_20241123_110734'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
wrapper.merge_to()
prompt = "a photo of a daisy"
## Optional: quantise the model to save on vram.
## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time.
#from optimum.quanto import quantize, freeze, qint8
#quantize(pipeline.transformer, weights=qint8)
#freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(69),
width=1024,
height=1024,
guidance_scale=3.5,
).images[0]
image.save("output.png", format="PNG")