guypayeur's picture
layoutlmv3-finetuned-cord_100
cc01572
---
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
datasets:
- cord-layoutlmv3
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-cord_100
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: cord-layoutlmv3
type: cord-layoutlmv3
config: cord
split: test
args: cord
metrics:
- name: Precision
type: precision
value: 0.9516369047619048
- name: Recall
type: recall
value: 0.9573353293413174
- name: F1
type: f1
value: 0.9544776119402986
- name: Accuracy
type: accuracy
value: 0.9630730050933786
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv3-finetuned-cord_100
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2085
- Precision: 0.9516
- Recall: 0.9573
- F1: 0.9545
- Accuracy: 0.9631
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.56 | 250 | 1.0211 | 0.7533 | 0.8024 | 0.7771 | 0.8073 |
| 1.3874 | 3.12 | 500 | 0.5352 | 0.8488 | 0.8698 | 0.8591 | 0.8778 |
| 1.3874 | 4.69 | 750 | 0.3738 | 0.8865 | 0.9124 | 0.8993 | 0.9228 |
| 0.3827 | 6.25 | 1000 | 0.2868 | 0.9253 | 0.9364 | 0.9308 | 0.9402 |
| 0.3827 | 7.81 | 1250 | 0.2506 | 0.9289 | 0.9394 | 0.9341 | 0.9457 |
| 0.2046 | 9.38 | 1500 | 0.2312 | 0.9427 | 0.9484 | 0.9455 | 0.9537 |
| 0.2046 | 10.94 | 1750 | 0.2194 | 0.9450 | 0.9513 | 0.9482 | 0.9588 |
| 0.1365 | 12.5 | 2000 | 0.2105 | 0.9495 | 0.9566 | 0.9530 | 0.9631 |
| 0.1365 | 14.06 | 2250 | 0.2115 | 0.9509 | 0.9573 | 0.9541 | 0.9631 |
| 0.1066 | 15.62 | 2500 | 0.2085 | 0.9516 | 0.9573 | 0.9545 | 0.9631 |
### Framework versions
- Transformers 4.33.0
- Pytorch 1.12.1+cu116
- Datasets 2.14.4
- Tokenizers 0.12.1