ktp-not-ktp-clip / README.md
habibi26's picture
Model save
bd6cba7 verified
metadata
base_model: openai/clip-vit-base-patch32
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: ktp-not-ktp-clip
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.989010989010989

ktp-not-ktp-clip

This model is a fine-tuned version of openai/clip-vit-base-patch32 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1267
  • Accuracy: 0.9890

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 7 0.5809 0.6374
No log 2.0 14 1.3401 0.6703
0.5558 3.0 21 0.6458 0.7692
0.5558 4.0 28 0.3785 0.8681
0.1701 5.0 35 0.3004 0.9451
0.1701 6.0 42 0.2204 0.9560
0.142 7.0 49 0.1483 0.9341
0.142 8.0 56 0.1386 0.9670
0.1002 9.0 63 0.7714 0.8681
0.1002 10.0 70 0.2285 0.9341
0.0956 11.0 77 0.1162 0.9780
0.0956 12.0 84 0.1104 0.9780
0.0004 13.0 91 0.1722 0.9780
0.0004 14.0 98 0.2109 0.9780
0.0209 15.0 105 0.3321 0.9560
0.0209 16.0 112 0.0785 0.9780
0.0209 17.0 119 0.1525 0.9670
0.0014 18.0 126 0.1436 0.9670
0.0014 19.0 133 0.2278 0.9670
0.0002 20.0 140 0.3035 0.9560
0.0002 21.0 147 0.1239 0.9780
0.001 22.0 154 0.1211 0.9890
0.001 23.0 161 0.1253 0.9890
0.0 24.0 168 0.1265 0.9890
0.0 25.0 175 0.1267 0.9890

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1