|
--- |
|
base_model: teknium/OpenHermes-2.5-Mistral-7B |
|
tags: |
|
- mistral |
|
- instruct |
|
- finetune |
|
- chatml |
|
- gpt4 |
|
- synthetic data |
|
- distillation |
|
- dpo |
|
- rlhf |
|
license: apache-2.0 |
|
language: |
|
- en |
|
datasets: |
|
- mlabonne/chatml_dpo_pairs |
|
--- |
|
|
|
<center><img src="https://i.imgur.com/qIhaFNM.png"></center> |
|
|
|
# NeuralHermes 2.5 - Mistral 7B |
|
|
|
NeuralHermes is based on the [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) model that has been further fine-tuned with Direct Preference Optimization (DPO) using the [mlabonne/chatml_dpo_pairs](https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs) dataset. It surpasses the original model on most benchmarks (see results). |
|
|
|
It is directly inspired by the RLHF process described by [Intel/neural-chat-7b-v3-1](https://huggingface.co/Intel/neural-chat-7b-v3-1)'s authors to improve performance. I used the same dataset and reformatted it to apply the ChatML template. |
|
|
|
The code to train this model is available on [Google Colab](https://colab.research.google.com/drive/1h4tAJStIef_BcO-OkY97X9_OFgKnFrLl). It required an A100 GPU for about an hour. |
|
|
|
## Quantized models |
|
|
|
* **GGUF**: https://huggingface.co/TheBloke/NeuralHermes-2.5-Mistral-7B-GGUF |
|
* **AWQ**: https://huggingface.co/TheBloke/NeuralHermes-2.5-Mistral-7B-AWQ |
|
* **GPTQ**: https://huggingface.co/TheBloke/NeuralHermes-2.5-Mistral-7B-GPTQ |
|
* **EXL2**: |
|
* 3.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-3.0bpw-h6-exl2 |
|
* 4.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-4.0bpw-h6-exl2 |
|
* 5.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-5.0bpw-h6-exl2 |
|
* 6.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-6.0bpw-h6-exl2 |
|
* 8.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-8.0bpw-h8-exl2 |
|
|
|
## Results |
|
|
|
**Update:** NeuralHermes-2.5 became the best Hermes-based model on the Open LLM leaderboard and one of the very best 7b models. 🎉 |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/yWe6VBFxkHiuOlDVBXtGo.png) |
|
|
|
Teknium (author of OpenHermes-2.5-Mistral-7B) benchmarked the model ([see his tweet](https://twitter.com/Teknium1/status/1729955709377503660)). |
|
|
|
Results are improved on every benchmark: **AGIEval** (from 43.07% to 43.62%), **GPT4All** (from 73.12% to 73.25%), and **TruthfulQA**. |
|
|
|
### AGIEval |
|
![](https://i.imgur.com/7an3B1f.png) |
|
|
|
### GPT4All |
|
![](https://i.imgur.com/TLxZFi9.png) |
|
|
|
### TruthfulQA |
|
![](https://i.imgur.com/V380MqD.png) |
|
|
|
You can view the Weights & Biases report [here](https://api.wandb.ai/links/halbihn/uem1q2dj). |
|
|
|
## Usage |
|
|
|
You can run this model using [LM Studio](https://lmstudio.ai/) or any other frontend. |
|
|
|
You can also run this model using the following code: |
|
|
|
```python |
|
import transformers |
|
from transformers import AutoTokenizer |
|
|
|
model_id = "halbihn/NeuralHermes-2.5-Mistral-7B" |
|
|
|
# Format prompt |
|
message = [ |
|
{"role": "system", "content": "You are a helpful assistant chatbot."}, |
|
{"role": "user", "content": "What is a Large Language Model?"} |
|
] |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False) |
|
|
|
# Create pipeline |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model_id, |
|
tokenizer=tokenizer |
|
) |
|
|
|
# Generate text |
|
sequences = pipeline( |
|
prompt, |
|
do_sample=True, |
|
temperature=0.7, |
|
top_p=0.9, |
|
num_return_sequences=1, |
|
max_length=200, |
|
) |
|
response = sequences[0]['generated_text'].split("<|im_start|>assistant")[-1].strip() |
|
print(response) |
|
|
|
|
|
# streaming example |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer |
|
import torch |
|
|
|
model_id = "halbihn/NeuralHermes-2.5-Mistral-7B" |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
model.to(device) |
|
|
|
def stream( |
|
user_prompt: str, |
|
max_tokens: int = 200, |
|
) -> None: |
|
"""Text streaming example |
|
""" |
|
|
|
system_prompt = 'Below is a conversation between Human and AI assistant named Mistral\n' |
|
|
|
message = [ |
|
{"role": "system", "content": system_prompt}, |
|
{"role": "user", "content": user_prompt} |
|
] |
|
prompt = tokenizer.apply_chat_template( |
|
message, |
|
add_generation_prompt=True, |
|
tokenize=False, |
|
) |
|
|
|
inputs = tokenizer([prompt], return_tensors="pt").to(device) |
|
|
|
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
|
|
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=max_tokens) |
|
|
|
stream("Tell me about the future") |
|
|
|
>>> The future is a vast and uncertain expanse, shaped by the collective actions and innovations of humanity. It is a blend of possibilities, technological advancements, and societal changes. Some potential aspects of the future include: |
|
>>> |
|
>>> 1. Technological advancements: Artificial intelligence, quantum computing, and biotechnology are expected to continue evolving, leading to breakthroughs in fields like medicine, energy, and communication. |
|
>>> |
|
>>> 2. Space exploration: As technology progresses, space travel may become more accessible, enabling humans to establish colonies on other planets and explore the cosmos further. |
|
>>> |
|
>>> 3. Climate change mitigation: The future will likely see increased efforts to combat climate change through renewable energy sources, carbon capture technologies, and sustainable practices. |
|
>>> |
|
>>> 4. Artificial intelligence integration: AI will likely become more integrated into daily life, assisting with tasks, automating jobs, and even influencing decision-making processes in various industries. |
|
``` |
|
|
|
## Training hyperparameters |
|
|
|
**LoRA**: |
|
* r=16 |
|
* lora_alpha=16 |
|
* lora_dropout=0.05 |
|
* bias="none" |
|
* task_type="CAUSAL_LM" |
|
* target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj'] |
|
|
|
**Training arguments**: |
|
* per_device_train_batch_size=4 |
|
* gradient_accumulation_steps=4 |
|
* gradient_checkpointing=True |
|
* learning_rate=5e-5 |
|
* lr_scheduler_type="cosine" |
|
* max_steps=200 |
|
* optim="paged_adamw_32bit" |
|
* warmup_steps=100 |
|
|
|
**DPOTrainer**: |
|
* beta=0.1 |
|
* max_prompt_length=1024 |
|
* max_length=1536 |