Edit model card

dpo-llama3-8b-grammar-rules

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1500
  • Rewards/chosen: -0.7612
  • Rewards/rejected: -2.8814
  • Rewards/accuracies: 1.0
  • Rewards/margins: 2.1202
  • Logps/rejected: -647.7891
  • Logps/chosen: -291.9149
  • Logits/rejected: -1.1894
  • Logits/chosen: -1.1810

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 1
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.388 0.4444 50 0.3531 -0.2310 -1.1328 1.0 0.9018 -472.9276 -238.8918 -1.2924 -1.2917
0.1309 0.8889 100 0.1500 -0.7612 -2.8814 1.0 2.1202 -647.7891 -291.9149 -1.1894 -1.1810

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
11
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for hannahbillo/dpo-llama3-8b-grammar-rules

Adapter
(108)
this model